Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinseok Lee is active.

Publication


Featured researches published by Jinseok Lee.


IEEE Transactions on Biomedical Engineering | 2012

Physiological Parameter Monitoring from Optical Recordings With a Mobile Phone

Christopher G. Scully; Jinseok Lee; Joseph Meyer; Alexander M. Gorbach; Domhnull Granquist-Fraser; Yitzhak Mendelson; Ki H. Chon

We show that a mobile phone can serve as an accurate monitor for several physiological variables, based on its ability to record and analyze the varying color signals of a fingertip placed in contact with its optical sensor. We confirm the accuracy of measurements of breathing rate, cardiac R-R intervals, and blood oxygen saturation, by comparisons to standard methods for making such measurements (respiration belts, ECGs, and pulse-oximeters, respectively). Measurement of respiratory rate uses a previously reported algorithm developed for use with a pulse-oximeter, based on amplitude and frequency modulation sequences within the light signal. We note that this technology can also be used with recently developed algorithms for detection of atrial fibrillation or blood loss.


Heart Rhythm | 2013

A novel application for the detection of an irregular pulse using an iPhone 4S in patients with atrial fibrillation

David D. McManus; Jinseok Lee; Oscar Maitas; Nada Esa; Rahul Pidikiti; Alex Carlucci; Josephine Harrington; Eric Mick; Ki H. Chon

BACKGROUND Atrial fibrillation (AF) is common and associated with adverse health outcomes. Timely detection of AF can be challenging using traditional diagnostic tools. Smartphone use is increasing and may provide an inexpensive and user-friendly means to diagnoseAF. OBJECTIVE To test the hypothesis that a smartphone-based application could detect an irregular pulse fromAF. METHODS Seventy-six adults with persistent AF were consented for participation in our study. We obtained pulsatile time series recordings before and after cardioversion using an iPhone 4S camera. A novel smartphone application conducted real-time pulse analysis using 2 statistical methods: root mean square of successive RR difference (RMSSD/mean) and Shannon entropy (ShE). We examined the sensitivity, specificity, and predictive accuracy of both algorithms using the 12-lead electrocardiogram as the gold standard. RESULTS RMSDD/mean and ShE were higher in participants in AF than in those with sinus rhythm. The 2 methods were inversely related to AF in regression models adjusting for key factors including heart rate and blood pressure (beta coefficients per SD increment in RMSDD/mean and ShE were-0.20 and-0.35; P<.001). An algorithm combining the 2 statistical methods demonstrated excellent sensitivity (0.962), specificity (0.975), and accuracy (0.968) for beat-to-beat discrimination of an irregular pulse during AF from sinus rhythm. CONCLUSIONS In a prospectively recruited cohort of 76 participants undergoing cardioversion for AF, we found that a novel algorithm analyzing signals recorded using an iPhone 4S accurately distinguished pulse recordings during AF from sinus rhythm. Data are needed to explore the performance and acceptability of smartphone-based applications for AF detection.


IEEE Transactions on Biomedical Engineering | 2013

Atrial Fibrillation Detection Using an iPhone 4S

Jinseok Lee; Bersain A. Reyes; David D. McManus; Oscar Mathias; Ki H. Chon

Atrial fibrillation (AF) affects three to five million Americans and is associated with significant morbidity and mortality. Existing methods to diagnose this paroxysmal arrhythmia are cumbersome and/or expensive. We hypothesized that an iPhone 4S can be used to detect AF based on its ability to record a pulsatile photoplethysmogram signal from a fingertip using the built-in camera lens. To investigate the capability of the iPhone 4S for AF detection, we first used two databases, the MIT-BIH AF and normal sinus rhythm (NSR) to derive discriminatory threshold values between two rhythms. Both databases include RR time series originating from 250 Hz sampled ECG recordings. We rescaled the RR time series to 30 Hz so that the RR time series resolution is 1/30 (s) which is equivalent to the resolution from an iPhone 4S. We investigated three statistical methods consisting of the root mean square of successive differences (RMSSD), the Shannon entropy (ShE) and the sample entropy (SampE), which have been proved to be useful tools for AF assessment. Using 64-beat segments from the MIT-BIH databases, we found the beat-to-beat accuracy value of 0.9405, 0.9300, and 0.9614 for RMSSD, ShE, and SampE, respectively. Using an iPhone 4S, we collected 2-min pulsatile time series from 25 prospectively recruited subjects with AF pre- and postelectrical cardioversion. Using derived threshold values of RMSSD, ShE and SampE from the MIT-BIH databases, we found the beat-to-beat accuracy of 0.9844, 0.8494, and 0.9522, respectively. It should be recognized that for clinical applications, the most relevant objective is to detect the presence of AF in the data. Using this criterion, we achieved an accuracy of 100% for both the MIT-BIH AF and iPhone 4S databases.


IEEE Transactions on Biomedical Engineering | 2011

Time-Varying Autoregressive Model-Based Multiple Modes Particle Filtering Algorithm for Respiratory Rate Extraction From Pulse Oximeter

Jinseok Lee; Ki H. Chon

We present a particle filtering algorithm, which combines both time-invariant (TIV) and time-varying autoregressive (TVAR) models for accurate extraction of breathing frequencies (BFs) that vary either slowly or suddenly. The algorithm sustains its robustness for up to 90 breaths/min (b/m) as well. The proposed algorithm automatically detects stationary and nonstationary breathing dynamics in order to use the appropriate TIV or TVAR algorithm and then uses a particle filter to extract accurate respiratory rates from as low as 6 b/m to as high as 90 b/m. The results were verified on 18 healthy human subjects (16 for metronome and 2 for spontaneous measurements), and the algorithm remained accurate even when the respiratory rate suddenly changed by 24 b/m (either increased or decreased by this amount). Furthermore, simulation examples show that the proposed algorithm remains accurate for SNR ratios as low as -20 dB. We are not aware of any other algorithms that are able to provide accurate TV BF over a wide range of respiratory rates directly from pulse oximeters.


IEEE Transactions on Biomedical Engineering | 2013

Time-Varying Coherence Function for Atrial Fibrillation Detection

Jinseok Lee; Yunyoung Nam; David D. McManus; Ki H. Chon

We introduce a novel method for the automatic detection of atrial fibrillation (AF) using time-varying coherence functions (TVCF). The TVCF is estimated by the multiplication of two time-varying transfer functions (TVTFs). The two TVTFs are obtained using two adjacent data segments with one data segment as the input signal and the other data segment as the output to produce the first TVTF; the second TVTF is produced by reversing the input and output signals. We found that the resultant TVCF between two adjacent normal sinus rhythm (NSR) segments shows high coherence values (near 1) throughout the entire frequency range. However, if either or both segments partially or fully contain AF, the resultant TVCF is significantly lower than 1. When TVCF was combined with Shannon entropy (SE), we obtained even more accurate AF detection rate of 97.9% for the MIT-BIH atrial fibrillation (AF) database (n = 23) with 128 beat segments. The detection algorithm was tested on four databases using 128 beat segments: the MIT-BIH AF database, the MIT-BIH NSR database ( n = 18), the MIT-BIH Arrhythmia database ( n = 48), and a clinical 24-h Holter AF database ( n = 25). Using the receiver operating characteristic curves from the combination of TVCF and SE, we obtained a sensitivity of 98.2% and specificity of 97.7% for the MIT-BIH AF database. For the MIT-BIH NSR database, we found a specificity of 99.7%. For the MIT-BIH Arrhythmia database, the sensitivity and specificity were 91.1% and 89.7%, respectively. For the clinical database (24-h Holter data), the sensitivity and specificity were 92.3% and 93.6%, respectively. We also found that a short segment (12 beats) also provided accurate AF detection for all databases: sensitivity of 94.7% and specificity of 90.4% for the MIT-BIH AF, specificity of 94.4% for the MIT-BIH-NSR, the sensitivity of 92.4% and specificity of 84.1% for the MIT-BIH arrhythmia, and sensitivity of 93.9% and specificity of 84.4% for the clinical database. The advantage of using a short segment is more accurate AF burden calculation as the timing of transitions between NSR and AF are more accurately detected.


IEEE Transactions on Biomedical Engineering | 2010

An Autoregressive Model-Based Particle Filtering Algorithms for Extraction of Respiratory Rates as High as 90 Breaths Per Minute From Pulse Oximeter

Jinseok Lee; Ki H. Chon

We present particle filtering (PF) algorithms for an accurate respiratory rate extraction from pulse oximeter recordings over a broad range: 12-90 breaths/min. These methods are based on an autoregressive (AR) model, where the aim is to find the pole angle with the highest magnitude as it corresponds to the respiratory rate. However, when SNR is low, the pole angle with the highest magnitude may not always lead to accurate estimation of the respiratory rate. To circumvent this limitation, we propose a probabilistic approach, using a sequential Monte Carlo method, named PF, which is combined with the optimal parameter search (OPS) criterion for an accurate AR model-based respiratory rate extraction. The PF technique has been widely adopted in many tracking applications, especially for nonlinear and/or non-Gaussian problems. We examine the performances of five different likelihood functions of the PF algorithm: the strongest neighbor, nearest neighbor (NN), weighted nearest neighbor (WNN), probability data association (PDA), and weighted probability data association (WPDA). The performance of these five combined OPS-PF algorithms was measured against a solely OPS-based AR algorithm for respiratory rate extraction from pulse oximeter recordings. The pulse oximeter data were collected from 33 healthy subjects with breathing rates ranging from 12 to 90 breaths/ min. It was found that significant improvement in accuracy can be achieved by employing particle filters, and that the combined OPS-PF employing either the NN or WNN likelihood function achieved the best results for all respiratory rates considered in this paper. The main advantage of the combined OPS-PF with either the NN or WNN likelihood function is that for the first time, respiratory rates as high as 90 breaths/min can be accurately extracted from pulse oximeter recordings.


IEEE Transactions on Circuits and Systems | 2007

Design Methodology for Domain Specific Parameterizable Particle Filter Realizations

Sangjin Hong; Jinseok Lee; Akshay Athalye; Petar M. Djuric; We-Duke Cho

This paper presents a reconfigurable particle filter design methodology for a real-time bearings-only tracking application. The methodology provides the capability of selecting a single particle filter from multiple particle filter realizations with maximum resource sharing. The autonomous buffer controller mechanism for the architecture ensures correct operation of the particle filters. Parameter adaptation and algorithm reconfiguration can be accomplished with negligible reconfiguration overhead through buffer controllers and a set of switches for transforming dataflow structures such that any desired particle filter can be implemented. Two target particle filters, sample importance resample filter (SIRF) and Gaussian particle filter (GPF), are realized using field programmable gate array (FPGA) based on the proposed methodology. However, the architecture can be extended for a wide range of particle filters with different sets of dynamics. This paper successfully demonstrates that implementation of a domain specific processor for particle filters is feasible with performance that is much higher than that of commercially available digital signal processors (DSPs).


international conference of the ieee engineering in medicine and biology society | 2012

Atrial fibrillation detection using a smart phone

Jinseok Lee; Bersain A. Reyes; David D. McManus; Oscar Mathias; Ki H. Chon

We hypothesized that an iPhone 4s can be used to detect atrial fibrillation (AF) based on its ability to record a pulsatile photoplethysmogram (PPG) signal from a fingertip using the built-in camera lens. To investigate the capability of the iPhone 4s for AF detection, 25 prospective subjects with AF pre- and post-electrical cardioversion were recruited. Using an iPhone 4s, we collected 2-minute pulsatile time series. We investigated 3 statistical methods consisting of the Root Mean Square of Successive Differences (RMSSD), the Shannon entropy (ShE) and the Sample entropy (SampE), which have been shown to be useful tools for AF assessment. The beat-to-beat accuracy for RMSSD, ShE and SampE was found to be 0.9844, 0.8494 and 0.9552, respectively. It should be recognized that for clinical applications, the most relevant objective is to detect the presence of AF or normal sinus rhythm (NSR) in the data. Using this criterion, we achieved an accuracy of 100% for both detecting the presence of either AF or NSR.


international conference of the ieee engineering in medicine and biology society | 2011

Atrial Fibrillation detection using time-varying coherence function and Shannon Entropy

Jinseok Lee; David D. McManus; Ki H. Chon

We introduce a novel method for automatic detection of Atrial Fibrillation (AF) using time-varying coherence functions (TVCF) and Shannon Entropy (SE). The TVCF is estimated by the multiplication of two time-varying transfer functions (TVTFs). Two TVTFs are obtained using two adjacent data segments with one data segment as the input signal and the other data segment as the output to produce the first TVTF; the second TVTF is produced by reversing the input and output signals. The detection algorithm was tested on RR interval time series derived from two databases: the MIT-BIH Atrial Fibrillation (AF) and the MIT-BIH normal sinus rhythm (NSR). The MIT-BIH database contains a variety of short and long AF beats from 25 subjects and the MIT-BIH NSR database consists of only normal sinus rhythms from 18 subjects. Using the receiver operating characteristic curves from the combination of TVCF and SE, we obtained the accuracy of 97.49%, sensitivity of 97.41% and specificity of 97.54% for the MIT-BIH AF database. Furthermore, the specificity of the MIT-BIH NSR database was 100%.


Sensors | 2016

Sleep Monitoring Based on a Tri-Axial Accelerometer and a Pressure Sensor

Yunyoung Nam; Yeesock Kim; Jinseok Lee

Sleep disorders are a common affliction for many people even though sleep is one of the most important factors in maintaining good physiological and emotional health. Numerous researchers have proposed various approaches to monitor sleep, such as polysomnography and actigraphy. However, such approaches are costly and often require overnight treatment in clinics. With this in mind, the research presented here has emerged from the question: “Can data be easily collected and analyzed without causing discomfort to patients?” Therefore, the aim of this study is to provide a novel monitoring system for quantifying sleep quality. The data acquisition system is equipped with multimodal sensors, including a three-axis accelerometer and a pressure sensor. To identify sleep quality based on measured data, a novel algorithm, which uses numerous physiological parameters, was proposed. Such parameters include non-REM sleep time, the number of apneic episodes, and sleep durations for dominant poses. To assess the effectiveness of the proposed system, three participants were enrolled in this experimental study for a duration of 20 days. From the experimental results, it can be seen that the proposed monitoring system is effective for quantifying sleep quality.

Collaboration


Dive into the Jinseok Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ki H. Chon

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yunyoung Nam

Soonchunhyang University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David D. McManus

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge