Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinsheng Lai is active.

Publication


Featured researches published by Jinsheng Lai.


Nature Genetics | 2012

Comparative population genomics of maize domestication and improvement

Matthew B. Hufford; Xun Xu; Joost van Heerwaarden; Tanja Pyhäjärvi; Jer Ming Chia; Reed A. Cartwright; Robert J. Elshire; Jeffrey C. Glaubitz; Kate Guill; Shawn M. Kaeppler; Jinsheng Lai; Peter L. Morrell; Laura M. Shannon; Chi Song; Nathan M. Springer; Ruth A. Swanson-Wagner; Peter Tiffin; Jun Wang; Gengyun Zhang; John Doebley; Michael D. McMullen; Doreen Ware; Edward S. Buckler; Shuang Yang; Jeffrey Ross-Ibarra

Domestication and plant breeding are ongoing 10,000-year-old evolutionary experiments that have radically altered wild species to meet human needs. Maize has undergone a particularly striking transformation. Researchers have sought for decades to identify the genes underlying maize evolution, but these efforts have been limited in scope. Here, we report a comprehensive assessment of the evolution of modern maize based on the genome-wide resequencing of 75 wild, landrace and improved maize lines. We find evidence of recovery of diversity after domestication, likely introgression from wild relatives, and evidence for stronger selection during domestication than improvement. We identify a number of genes with stronger signals of selection than those previously shown to underlie major morphological changes. Finally, through transcriptome-wide analysis of gene expression, we find evidence both consistent with removal of cis-acting variation during maize domestication and improvement and suggestive of modern breeding having increased dominance in expression while targeting highly expressed genes.


Nature Genetics | 2012

Maize HapMap2 identifies extant variation from a genome in flux

Jer-Ming Chia; Chi Song; Peter J. Bradbury; Denise E. Costich; Natalia de Leon; John Doebley; Robert J. Elshire; Brandon S. Gaut; Laura Geller; Jeffrey C. Glaubitz; Michael A. Gore; Kate Guill; James B. Holland; Matthew B. Hufford; Jinsheng Lai; Meng Li; Xin Liu; Yanli Lu; Richard McCombie; Rebecca J. Nelson; Jesse Poland; Boddupalli M. Prasanna; Tanja Pyhäjärvi; Tingzhao Rong; Rajandeep S. Sekhon; Qi Sun; Maud I. Tenaillon; Feng Tian; Jun Wang; Xun Xu

Whereas breeders have exploited diversity in maize for yield improvements, there has been limited progress in using beneficial alleles in undomesticated varieties. Characterizing standing variation in this complex genome has been challenging, with only a small fraction of it described to date. Using a population genetics scoring model, we identified 55 million SNPs in 103 lines across pre-domestication and domesticated Zea mays varieties, including a representative from the sister genus Tripsacum. We find that structural variations are pervasive in the Z. mays genome and are enriched at loci associated with important traits. By investigating the drivers of genome size variation, we find that the larger Tripsacum genome can be explained by transposable element abundance rather than an allopolyploid origin. In contrast, intraspecies genome size variation seems to be controlled by chromosomal knob content. There is tremendous overlap in key gene content in maize and Tripsacum, suggesting that adaptations from Tripsacum (for example, perennialism and frost and drought tolerance) can likely be integrated into maize.


Nature Genetics | 2010

Genome-wide patterns of genetic variation among elite maize inbred lines

Jinsheng Lai; Ruiqiang Li; Xun Xu; Weiwei Jin; Mingliang Xu; Hainan Zhao; Zhongkai Xiang; Weibin Song; Kai Ying; Mei Zhang; Yinping Jiao; Peixiang Ni; Jianguo Zhang; Dong Li; Xiaosen Guo; Kaixiong Ye; Min Jian; Bo Wang; Huisong Zheng; Huiqing Liang; Xiuqing Zhang; Shoucai Wang; Shaojiang Chen; Jiansheng Li; Yan Fu; Nathan M. Springer; Huanming Yang; Jian Wang; Jing-Rui Dai; Jun Wang

We have resequenced a group of six elite maize inbred lines, including the parents of the most productive commercial hybrid in China. This effort uncovered more than 1,000,000 SNPs, 30,000 indel polymorphisms and 101 low-sequence-diversity chromosomal intervals in the maize genome. We also identified several hundred complete genes that show presence/absence variation among these resequenced lines. We discuss the potential roles of complementation of presence/absence variations and other deleterious mutations in contributing to heterosis. High-density SNP and indel polymorphism markers reported here are expected to be a valuable resource for future genetic studies and the molecular breeding of this important crop.


Nature Genetics | 2012

Genome-wide genetic changes during modern breeding of maize

Yinping Jiao; Hainan Zhao; Longhui Ren; Weibin Song; Biao Zeng; Jinjie Guo; Baobao Wang; Zhipeng Liu; Jing Chen; Wei Li; Mei Zhang; Shaojun Xie; Jinsheng Lai

The success of modern maize breeding has been demonstrated by remarkable increases in productivity over the last four decades. However, the underlying genetic changes correlated with these gains remain largely unknown. We report here the sequencing of 278 temperate maize inbred lines from different stages of breeding history, including deep resequencing of 4 lines with known pedigree information. The results show that modern breeding has introduced highly dynamic genetic changes into the maize genome. Artificial selection has affected thousands of targets, including genes and non-genic regions, leading to a reduction in nucleotide diversity and an increase in the proportion of rare alleles. Genetic changes during breeding happen rapidly, with extensive variation (SNPs, indels and copy-number variants (CNVs)) occurring, even within identity-by-descent regions. Our genome-wide assessment of genetic changes during modern maize breeding provides new strategies as well as practical targets for future crop breeding and biotechnology.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Extensive, clustered parental imprinting of protein-coding and noncoding RNAs in developing maize endosperm

Michael Q. Zhang; Hainan Zhao; Shaojun Xie; Jian Chen; Xu Y; Kang L. Wang; Guan H; Hu X; Jiao Y; Weibin Song; Jinsheng Lai

Although genetic imprinting was discovered in maize 40 years ago, its exact extent in the triploid endosperm remains unknown. Here, we have analyzed global patterns of allelic gene expression in developing maize endosperms from reciprocal crosses between inbreds B73 and Mo17. We have defined an imprinted gene as one in which the relative expression of the maternal and paternal alleles differ at least fivefold in both hybrids of the reciprocal crosses. We found that at least 179 genes (1.6% of protein-coding genes) expressed in the endosperm are imprinted, with 68 of them showing maternal preferential expression and 111 paternal preferential expression. Additionally, 38 long noncoding RNAs were imprinted. The latter are transcribed in either sense or antisense orientation from intronic regions of normal protein-coding genes or from intergenic regions. Imprinted genes show a clear pattern of clustering around the genome, with a number of imprinted genes being adjacent to each other. Analysis of allele-specific methylation patterns of imprinted loci in the hybrid endosperm identified 21 differentially methylated regions (DMRs) of several hundred base pairs in length, corresponding to both imprinted genes and noncoding transcripts. All DMRs identified are uniformly hypomethylated in maternal alleles and hypermethylated in paternal alleles, regardless of the imprinting direction of their corresponding loci. Our study indicates highly extensive and complex regulation of genetic imprinting in maize endosperm, a mechanism that can potentially function in the balancing of the gene dosage of this triploid tissue.


Nature Genetics | 2015

A maize wall-associated kinase confers quantitative resistance to head smut

Weiliang Zuo; Qing Chao; Nan Zhang; Jianrong Ye; Guoqing Tan; Bailin Li; Yuexian Xing; Boqi Zhang; Haijun Liu; Kevin A. Fengler; Jing Zhao; Xianrong Zhao; Yongsheng Chen; Jinsheng Lai; Jianbing Yan; Mingliang Xu

Head smut is a systemic disease in maize caused by the soil-borne fungus Sporisorium reilianum that poses a grave threat to maize production worldwide. A major head smut quantitative resistance locus, qHSR1, has been detected on maize chromosome bin2.09. Here we report the map-based cloning of qHSR1 and the molecular mechanism of qHSR1-mediated resistance. Sequential fine mapping and transgenic complementation demonstrated that ZmWAK is the gene within qHSR1 conferring quantitative resistance to maize head smut. ZmWAK spans the plasma membrane, potentially serving as a receptor-like kinase to perceive and transduce extracellular signals. ZmWAK was highly expressed in the mesocotyl of seedlings where it arrested biotrophic growth of the endophytic S. reilianum. Impaired expression in the mesocotyl compromised ZmWAK-mediated resistance. Deletion of the ZmWAK locus appears to have occurred after domestication and spread among maize germplasm, and the ZmWAK kinase domain underwent functional constraints during maize evolution.


Plant Physiology | 2014

Dynamic Transcriptome Landscape of Maize Embryo and Endosperm Development

Jian Chen; Biao Zeng; Mei Zhang; Shaojun Xie; Gaokui Wang; Andrew Hauck; Jinsheng Lai

A high-resolution spatiotemporal transcriptome atlas of maize seed uncovers the genetic control of embryo and endosperm development. Maize (Zea mays) is an excellent cereal model for research on seed development because of its relatively large size for both embryo and endosperm. Despite the importance of seed in agriculture, the genome-wide transcriptome pattern throughout seed development has not been well characterized. Using high-throughput RNA sequencing, we developed a spatiotemporal transcriptome atlas of B73 maize seed development based on 53 samples from fertilization to maturity for embryo, endosperm, and whole seed tissues. A total of 26,105 genes were found to be involved in programming seed development, including 1,614 transcription factors. Global comparisons of gene expression highlighted the fundamental transcriptomic reprogramming and the phases of development. Coexpression analysis provided further insight into the dynamic reprogramming of the transcriptome by revealing functional transitions during maturation. Combined with the published nonseed high-throughput RNA sequencing data, we identified 91 transcription factors and 1,167 other seed-specific genes, which should help elucidate key mechanisms and regulatory networks that underlie seed development. In addition, correlation of gene expression with the pattern of DNA methylation revealed that hypomethylation of the gene body region should be an important factor for the expressional activation of seed-specific genes, especially for extremely highly expressed genes such as zeins. This study provides a valuable resource for understanding the genetic control of seed development of monocotyledon plants.


BMC Genomics | 2007

Sequence-indexed mutations in maize using the UniformMu transposon-tagging population

A. Mark Settles; David R. Holding; Bao-Cai Tan; Susan Latshaw; Juan Liu; Masaharu Suzuki; Li Li; Brent A O'Brien; Diego S. Fajardo; Ewa Wroclawska; Chi-Wah Tseung; Jinsheng Lai; Charles T. Hunter; Wayne T. Avigne; John Baier; Joachim Messing; L. Curtis Hannah; Karen E. Koch; Philip W. Becraft; Brian A. Larkins; Donald R. McCarty

BackgroundGene knockouts are a critical resource for functional genomics. In Arabidopsis, comprehensive knockout collections were generated by amplifying and sequencing genomic DNA flanking insertion mutants. These Flanking Sequence Tags (FSTs) map each mutant to a specific locus within the genome. In maize, FSTs have been generated using DNA transposons. Transposable elements can generate unstable insertions that are difficult to analyze for simple knockout phenotypes. Transposons can also generate somatic insertions that fail to segregate in subsequent generations.ResultsTransposon insertion sites from 106 UniformMu FSTs were tested for inheritance by locus-specific PCR. We confirmed 89% of the FSTs to be germinal transposon insertions. We found no evidence for somatic insertions within the 11% of insertion sites that were not confirmed. Instead, this subset of insertion sites had errors in locus-specific primer design due to incomplete or low-quality genomic sequences. The locus-specific PCR assays identified a knockout of a 6-phosphogluconate dehydrogenase gene that co-segregates with a seed mutant phenotype. The mutant phenotype linked to this knockout generates novel hypotheses about the role for the plastid-localized oxidative pentose phosphate pathway during grain-fill.ConclusionWe show that FSTs from the UniformMu population identify stable, germinal insertion sites in maize. Moreover, we show that these sequence-indexed mutations can be readily used for reverse genetic analysis. We conclude from these data that the current collection of 1,882 non-redundant insertion sites from UniformMu provide a genome-wide resource for reverse genetics.


BMC Genomics | 2014

An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population

Zongliang Chen; Baobao Wang; Xiaomei Dong; Han Liu; Longhui Ren; Jian Chen; Andrew Hauck; Weibin Song; Jinsheng Lai

BackgroundUnderstanding genetic control of tassel and ear architecture in maize (Zea mays L. ssp. mays) is important due to their relationship with grain yield. High resolution QTL mapping is critical for understanding the underlying molecular basis of phenotypic variation. Advanced populations, such as recombinant inbred lines, have been broadly adopted for QTL mapping; however, construction of large advanced generation crop populations is time-consuming and costly. The rapidly declining cost of genotyping due to recent advances in next-generation sequencing technologies has generated new possibilities for QTL mapping using large early generation populations.ResultsA set of 708 F2 progeny derived from inbreds Chang7-2 and 787 were generated and genotyped by whole genome low-coverage genotyping-by-sequencing method (average 0.04×). A genetic map containing 6,533 bin-markers was constructed based on the parental SNPs and a sliding-window method, spanning a total genetic distance of 1,396 cM. The high quality and accuracy of this map was validated by the identification of two well-studied genes, r1, a qualitative trait locus for color of silk (chromosome 10) and ba1 for tassel branch number (chromosome 3). Three traits of tassel and ear architecture were evaluated in this population, a total of 10 QTL were detected using a permutation-based-significance threshold, seven of which overlapped with reported QTL. Three genes (GRMZM2G316366, GRMZM2G492156 and GRMZM5G805008) encoding MADS-box domain proteins and a BTB/POZ domain protein were located in the small intervals of qTBN5 and qTBN7 (~800 Kb and 1.6 Mb in length, respectively) and may be involved in patterning of tassel architecture. The small physical intervals of most QTL indicate high-resolution mapping is obtainable with this method.ConclusionsWe constructed an ultra-high-dentisy linkage map for the large early generation population in maize. Our study provides an efficient approach for fast detection of quantitative loci responsible for complex trait variation with high accuracy, thus helping to dissect the underlying molecular basis of phenotypic variation and accelerate improvement of crop breeding in a cost-effective fashion.


Comparative and Functional Genomics | 2004

On the Tetraploid Origin of the Maize Genome

Zuzana Swigonova; Jinsheng Lai; Jianxin Ma; Wusirika Ramakrishna; Victor Llaca; Jeffrey L. Bennetzen; Joachim Messing

Data from cytological and genetic mapping studies suggest that maize arose as a tetraploid. Two previous studies investigating the most likely mode of maize origin arrived at different conclusions. Gaut and Doebley [7] proposed a segmental allotetraploid origin of the maize genome and estimated that the two maize progenitors diverged at 20.5 million years ago (mya). In a similar study, using larger data set, Brendel and colleagues (quoted in [8]) suggested a single genome duplication at 16 mya. One of the key components of such analyses is to examine sequence divergence among strictly orthologous genes. In order to identify such genes, Lai and colleagues [10] sequenced five duplicated chromosomal regions from the maize genome and the orthologous counterparts from the sorghum genome. They also identified the orthologous regions in rice. Using positional information of genetic components, they identified 11 orthologous genes across the two duplicated regions of maize, and the sorghum and rice regions. Swigonova et al. [12] analyzed the 11 orthologues, and showed that all five maize chromosomal regions duplicated at the same time, supporting a tetraploid origin of maize, and that the two maize progenitors diverged from each other at about the same time as each of them diverged from sorghum, about 11.9 mya.

Collaboration


Dive into the Jinsheng Lai's collaboration.

Top Co-Authors

Avatar

Weibin Song

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Chen

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Mei Zhang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hainan Zhao

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaomei Dong

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Baobao Wang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Haiming Zhao

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge