Jinshui Miao
Michigan State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jinshui Miao.
Small | 2015
Jinshui Miao; Weida Hu; Youliang Jing; Wenjin Luo; Lei Liao; Anlian Pan; Shiwei Wu; Jingxin Cheng; Xiaoshuang Chen; Wei Lu
2D Molybdenum disulfide (MoS2 ) is a promising candidate material for high-speed and flexible optoelectronic devices, but only with low photoresponsivity. Here, a large enhancement of photocurrent response is obtained by coupling few-layer MoS2 with Au plasmonic nanostructure arrays. Au nanoparticles or nanoplates placed onto few-layer MoS2 surface can enhance the local optical field in the MoS2 layer, due to the localized surface plasmon (LSP) resonance. After depositing 4 nm thick Au nanoparticles sparsely onto few-layer MoS2 phototransistors, a doubled increase in the photocurrent response is observed. The photocurrent of few-layer MoS2 phototransistors exhibits a threefold enhancement with periodic Au nanoarrays. The simulated optical field distribution confirms that light can be trapped and enhanced near the Au nanoplates. These findings offer an avenue for practical applications of high performance MoS2 -based optoelectronic devices or systems in the future.
ACS Nano | 2014
Jinshui Miao; Weida Hu; Nan Guo; Zhenyu Lu; Xuming Zou; Lei Liao; Suixing Shi; Pingping Chen; Zhiyong Fan; Johnny C. Ho; Tianxin Li; Xiao Shuang Chen; Wei Lu
Here we report InAs nanowire (NW) near-infrared photodetectors having a detection wavelength up to ∼1.5 μm. The single InAs NW photodetectors displayed minimum hysteresis with a high Ion/Ioff ratio of 10(5). At room temperature, the Schottky-Ohmic contacted photodetectors had an external photoresponsivity of ∼5.3 × 10(3) AW(-1), which is ∼300% larger than that of Ohmic-Ohmic contacted detectors (∼1.9 × 10(3) AW(-1)). A large enhancement in photoresponsivity (∼300%) had also been achieved in metal Au-cluster-decorated InAs NW photodetectors due to the formation of Schottky junctions at the InAs/Au cluster contacts. The photocurrent decreased when the photodetectors were exposed to ambient atmosphere because of the high surface electron concentration and rich surface defect states in InAs NWs. A theoretical model based on charge transfer and energy band change is proposed to explain this observed performance. To suppress the negative effects of surface defect states and atmospheric molecules, new InAs NW photodetectors with a half-wrapped top-gate had been fabricated by using 10 nm HfO2 as the top-gate dielectric.
Small | 2015
Jinshui Miao; Weida Hu; Nan Guo; Zhenyu Lu; Xingqiang Liu; Lei Liao; Pingping Chen; Tao Jiang; Shiwei Wu; Johnny C. Ho; Lin Wang; Xiaoshuang Chen; Wei Lu
Graphene is a promising candidate material for high-speed and ultra-broadband photodetectors. However, graphene-based photodetectors suffer from low photoreponsivity and I(light)/I(dark) ratios due to their negligible-gap nature and small optical absorption. Here, a new type of graphene/InAs nanowire (NW) vertically stacked heterojunction infrared photodetector is reported, with a large photoresponsivity of 0.5 AW(-1) and I(light)/I(dark) ratio of 5 × 10(2), while the photoresponsivity and I(light)/I(dark) ratio of graphene infrared photodetectors are 0.1 mAW(-1) and 1, respectively. The Fermi level (E(F)) of graphene can be widely tuned by the gate voltage owing to its 2D nature. As a result, the back-gated bias can modulate the Schottky barrier (SB) height at the interface between graphene and InAs NWs. Simulations further demonstrate the rectification behavior of graphene/InAs NW heterojunctions and the tunable SB controls charge transport across the vertically stacked heterostructure. The results address key challenges for graphene-based infrared detectors, and are promising for the development of graphene electronic and optoelectronic applications.
Advanced Materials | 2014
Nan Guo; Weida Hu; Lei Liao; SenPo Yip; Johnny C. Ho; Jinshui Miao; Zhi Zhang; Jin Zou; Tao Jiang; Shiwei Wu; Xiaoshuang Chen; Wei Lu
Core/shell-like n-type InAs nanowire phototransistors based on majority-carrier-dominated photodetection are investigated. Under optical illumination, electrons generated from the core are excited into the self-assembled near-surface photogating layer, forming a built-in electric field to significantly regulate the core conductance. Anomalous high photoconductive gain and fast response time are obtained at room temperature.
Applied Physics Letters | 2004
Bin Chen; Huali Yang; L. Z. Zhao; Jinshui Miao; B. Xu; Xianggang Qiu; B. R. Zhao; X. Y. Qi; X. F. Duan
Pt/(Ba0.7Sr0.3)TiO3 (BST)/YBa2Cu3O7−x capacitors were prepared and investigated for the dead-layer (DL) thickness (td) and the DL dielectric constant (ed). Based on the series capacitor model, the td/ed ratio of 0.066 nm and the bulk BST ferroelectric-layer dielectric constant of 1370 were obtained through the measurements of the capacitance–voltage characteristics. The td×ed value of 120 nm was obtained through the measurements of the current–voltage characteristics. Combining these data, the DL thickness and the DL dielectric constant are respectively estimated to be 2.8 nm and 42.6.
ACS Nano | 2015
Jinshui Miao; Suoming Zhang; Le Cai; Martin Scherr; Chuan Wang
This paper reports high-performance top-gated black phosphorus (BP) field-effect transistors with channel lengths down to 20 nm fabricated using a facile angle evaporation process. By controlling the evaporation angle, the channel length of the transistors can be reproducibly controlled to be anywhere between 20 and 70 nm. The as-fabricated 20 nm top-gated BP transistors exhibit respectable on-state current (174 μA/μm) and transconductance (70 μS/μm) at a VDS of 0.1 V. Due to the use of two-dimensional BP as the channel material, the transistors exhibit relatively small short channel effects, preserving a decent on-off current ratio of 10(2) even at an extremely small channel length of 20 nm. Additionally, unlike the unencapsulated BP devices, which are known to be chemically unstable in ambient conditions, the top-gated BP transistors passivated by the Al2O3 gate dielectric layer remain stable without noticeable degradation in device performance after being stored in ambient conditions for more than 1 week. This work demonstrates the great promise of atomically thin BP for applications in ultimately scaled transistors.
Applied Physics Letters | 2007
Jinshui Miao; J. Yuan; Huijue Wu; Shengxue Yang; B. Xu; Lixin Cao; B.R. Zhao
Epitaxial Ba0.15Zr0.85TiO3 (BZT) ferroelectric thin films with (001), (011), and (111) orientations were, respectively, grown on La0.67Sr0.33MnO3 (LSMO) buffered LaAlO3 substrates by pulsed laser deposition method. The dc electric-field dependence of permittivity and dielectric loss of (001)-, (011)-, and (111)-oriented BZT/LSMO heterostructures obeys the Johnson formula, and the ac electric-field dependence of that obeys the Rayleigh law under the subswitching field region. The anisotropic dielectric properties are attributed to the higher mobility of the charge carriers, the concentration of mobile interfacial domain walls, and boundaries in the (111)-oriental films than in the (110)- and (100)-oriented films.
Applied Physics Letters | 2005
Wei Chen; Fapei Zhang; Jinshui Miao; B. Xu; Xiaochun Dong; Lixin Cao; Xianggang Qiu; Bairu Zhao; Pengcheng Dai
We use magnetism and specific heat measurements to investigate the hexagonal Mn-rich YMnO3. It is found that upon cooling from a high temperature, the compound first orders antiferromagnetically at TN∼72K and then undergoes a re-entrant spin glass (RSG) transition at TSG∼42K. This RSG behavior results from the competition between the ferromagnetic interaction and the antiferromagnetic interaction, which is related to the intrinsic geometric magnetic frustration in this system.
Journal of Applied Physics | 2005
Bin Chen; H. Yang; Jinshui Miao; L. Z. Zhao; Lixin Cao; B. Xu; Xianggang Qiu; B. R. Zhao
Leakage current of Pt∕(Ba0.7Sr0.3)TiO3 (BST)∕YBa2Cu3O7−δ capacitors on a (001) SrTiO3 substrate was studied. By modeling a low-dielectric constant layer, a so-called dead layer, between the Pt∕BST interface as a parasitic capacitor in series with the bulk layer capacitor, the leakage current of Pt∕BST interface was well analyzed based on the modified Schottky emission equation. Furthermore, a two-step schematic energy band diagram is proposed to explain the carrier transport through the Pt∕BST interface.
ACS Nano | 2016
Le Cai; Suoming Zhang; Jinshui Miao; Zhibin Yu; Chuan Wang
This paper reports intrinsically stretchable thin-film transistors (TFTs) and integrated logic circuits directly printed on elastomeric polydimethylsiloxane (PDMS) substrates. The printed devices utilize carbon nanotubes and a type of hybrid gate dielectric comprising PDMS and barium titanate (BaTiO3) nanoparticles. The BaTiO3/PDMS composite simultaneously provides high dielectric constant, superior stretchability, low leakage, as well as good printability and compatibility with the elastomeric substrate. Both TFTs and logic circuits can be stretched beyond 50% strain along either channel length or channel width directions for thousands of cycles while showing no significant degradation in electrical performance. This work may offer an entry into more sophisticated stretchable electronic systems with monolithically integrated sensors, actuators, and displays, fabricated by scalable and low-cost methods for real life applications.