Jinwei He
Tianjin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jinwei He.
IEEE Transactions on Industry Applications | 2011
Jinwei He; Yun Wei Li
This paper presents a virtual impedance design and implementation approach for power electronics interfaced distributed generation (DG) units. To improve system stability and prevent power couplings, the virtual impedances can be placed between interfacing converter outputs and the main grid. However, optimal design of the impedance value, robust implementation of the virtual impedance, and proper utilization of the virtual impedance for DG performance enhancement are key for the virtual impedance concept. In this paper, flexible small-signal models of microgrids in different operation modes are developed first. Based on the developed microgrid models, the desired DG impedance range is determined considering the stability, transient response, and power flow performance of DG units. A robust virtual impedance implementation method is also presented, which can alleviate voltage distortion problems caused by harmonic loads compared to the effects of physical impedances. Furthermore, an adaptive impedance concept is proposed to further improve power control performances during the transient and grid faults. Simulation and experimental results are provided to validate the impedance design approach, the virtual impedance implementation method, and the proposed adaptive transient impedance control strategies.
IEEE Transactions on Power Electronics | 2012
Jinwei He; Yun Wei Li
For the operation of autonomous microgrids, an important task is to share the load demand using multiple distributed generation (DG) units. In order to realize satisfied power sharing without the communication between DG units, the voltage droop control and its different variations have been reported in the literature. However, in a low-voltage microgrid, due to the effects of nontrivial feeder impedance, the conventional droop control is subject to the real and reactive power coupling and steady-state reactive power sharing errors. Furthermore, complex microgrid configurations (looped or mesh networks) often make the reactive power sharing more challenging. To improve the reactive power sharing accuracy, this paper proposes an enhanced control strategy that estimates the reactive power control error through injecting small real power disturbances, which is activated by the low-bandwidth synchronization signals from the central controller. At the same time, a slow integration term for reactive power sharing error elimination is added to the conventional reactive power droop control. The proposed compensation method achieves accurate reactive power sharing at the steady state, just like the performance of real power sharing through frequency droop control. Simulation and experimental results validate the feasibility of the proposed method.
IEEE Transactions on Power Electronics | 2013
Jinwei He; Yun Wei Li; Dubravko Bosnjak; Brent Harris
This paper addresses the resonance problem in a parallel-inverter-based grid-interactive microgrid. Unlike the single grid-connected inverter system where the resonance frequency is mainly fixed by the inverter output LCL filter parameters, the parallel-inverter-based grid-interactive microgrid system presents a more challenging picture where inverter interactions will excite complex resonances at various frequencies. As a result, line currents of inverters can be severely distorted even when the control schemes and filter circuits are properly designed based on the single-inverter model. This paper first develops a microgrid model using discrete time-domain closed-loop Nortons equivalent circuit. Multiple resonances can then be evaluated with the developed model. To improve the microgrid power quality, this paper also designs a virtual-harmonic-resistance-based active damping method. The proposed damping method can be seamlessly incorporated into the conventional deadbeat control scheme through the direct control reference modification. Therefore, the active damping method is able to address both the transient and steady-state resonances within the deadbeat current control bandwidth. Simulation and experimental results are provided to validate the correctness of the developed resonance modeling and active damping methods.
IEEE Transactions on Power Electronics | 2012
Jinwei He; Yun Wei Li
In this paper, a generalized closed-loop control (GCC) scheme is proposed for voltage source converters (VSCs) with LC or LCL output filters. The proposed GCC scheme has a single-loop control of inverter output (voltage or current) and two parallel virtual impedance terms using additional measurements. The virtual impedance can be the equivalent internal impedance or external impedance (or both), depending on their control term and feedback variable selection. The internal impedance term is mainly responsible for providing desired damping to the filter circuit, and the external virtual impedance term can effectively adjust the converter system closed-loop output impedance. As each term in the GCC scheme can be controlled independently, the proposed GCC scheme has great flexibility and can easily realize and explain the performances of the traditional single- and multiloop control schemes and their different variations. Moreover, the GCC scheme provides a distinct physical meaning of each control term, which makes the control parameter tuning more straightforward and robust. Additionally, as shown in this paper, the proposed GCC scheme can tackle some traditionally challenging control objectives by avoiding the harmonics filtering or derivative terms. Experimental results from laboratory VSC prototypes are obtained to validate the proposed GCC scheme.
IEEE Transactions on Power Electronics | 2013
Jinwei He; Yun Wei Li; Josep M. Guerrero; Frede Blaabjerg; Juan C. Vasquez
In order to address the load sharing problem in islanding microgrids, this paper proposes an enhanced distributed generation (DG) unit virtual impedance control approach. The proposed method can realize accurate regulation of DG unit equivalent impedance at both fundamental and selected harmonic frequencies. In contrast to conventional virtual impedance control methods, where only a line current feed-forward term is added to the DG voltage reference, the proposed virtual impedance at fundamental and harmonic frequencies is regulated using DG line current and point of common coupling (PCC) voltage feed-forward terms, respectively. With this modification, the impacts of mismatched physical feeder impedances are compensated. Thus, better reactive and harmonic power sharing can be realized. Additionally, this paper also demonstrates that PCC harmonic voltages can be mitigated by reducing the magnitude of DG unit equivalent harmonic impedance. Finally, in order to alleviate the computing load at DG unit local controller, this paper further exploits the band-pass capability of conventionally resonant controllers. With the implementation of proposed resonant controller, accurate power sharing and PCC harmonic voltage compensation are achieved without using any fundamental and harmonic components extractions. Experimental results from a scaled single-phase microgrid prototype are provided to validate the feasibility of the proposed virtual impedance control approach.
IEEE Transactions on Power Electronics | 2014
Xiongfei Wang; Frede Blaabjerg; Marco Liserre; Zhe Chen; Jinwei He; Yun Wei Li
The interactions among the parallel grid-connected converters coupled through the grid impedance tend to result in stability and power quality problems. To address them, this paper proposes an active damper based on a high bandwidth power electronics converter. The general idea behind this proposal is to dynamically reshape the grid impedance profile seen from the point of common coupling of the converters, such that the potential oscillations and resonance propagation in the parallel grid-connected converters can be mitigated. To validate the effectiveness of the active damper, simulations and experimental tests on a three-converter-based setup are carried out. The results show that the active damper can become a promising way to stabilize the power-electronics-based ac power systems.
IEEE Transactions on Power Electronics | 2014
Jinwei He; Yun Wei Li; Frede Blaabjerg; Xiongfei Wang
The increasing application of nonlinear loads may cause distribution system power quality issues. In order to utilize distributed generation (DG) unit interfacing converters to actively compensate harmonics, this paper proposes an enhanced current control approach, which seamlessly integrates system harmonic mitigation capabilities with the primary DG power generation function. As the proposed current controller has two well-decoupled control branches to independently control fundamental and harmonic DG currents, local nonlinear load harmonic current detection and distribution system harmonic voltage detection are not necessary for the proposed harmonic compensation method. Moreover, a closed-loop power control scheme is employed to directly derive the fundamental current reference without using any phase-locked loops (PLL). The proposed power control scheme effectively eliminates the impacts of steady-state fundamental current tracking errors in the DG units. Thus, an accurate power control is realized even when the harmonic compensation functions are activated. In addition, this paper also briefly discusses the performance of the proposed method when DG unit is connected to a grid with frequency deviation. Simulated and experimental results from a single-phase DG unit validate the correctness of the proposed methods.
IEEE Transactions on Industrial Electronics | 2013
Jinwei He; Yun Wei Li
This paper presents a hybrid voltage and current control method to improve the performance of interfacing converters in distributed generation (DG) units. In general, current-controlled methods have been widely adopted in grid-connected converters nowadays. Nevertheless, in an islanded system, the voltage control of DG units is desired to provide direct voltage support to the loads. Due to the absence of closed-loop line current controller, the voltage control scheme can hardly regulate the DG units line current harmonics. Furthermore, if not addressed properly, the transfer between the grid-connected operation and autonomous islanding operation will introduce nontrivial transient currents. To overcome the drawbacks of voltage- and current-controlled DG units, this paper develops a hybrid voltage and current control method (HCM). The proposed method allows the coordinated closed-loop control of the DG unit fundamental voltage and line harmonic currents. With the HCM, local harmonic loads of the DG unit can even be compensated without using harmonic current extraction. In addition, the HCM guarantees smooth transition during the grid-connected/islanding operation mode transfer. Simulated and experimental results are provided to verify the feasibility of the proposed approach.
IEEE Transactions on Industrial Electronics | 2014
Jinwei He; Yun Wei Li; Frede Blaabjerg
To accomplish superior harmonic compensation performance using distributed generation (DG) unit power electronics interfaces, an adaptive hybrid voltage and current controlled method (HCM) is proposed in this paper. It shows that the proposed adaptive HCM can reduce the numbers of low-pass/bandpass filters in the DG unit digital controller. Moreover, phase-locked loops are not necessary as the microgrid frequency deviation can be automatically identified by the power control loop. Consequently, the proposed control method provides opportunities to reduce DG control complexity, without affecting the harmonic compensation performance. Comprehensive simulated and experimental results from a single-phase microgrid are provided to verify the feasibility of the proposed adaptive HCM approach.
IEEE Transactions on Power Electronics | 2015
Jinwei He; Yun Wei Li; Frede Blaabjerg
To address inaccurate power sharing problems in autonomous islanding microgrids, an enhanced droop control method through online virtual impedance adjustment is proposed. First, a term associated with DG reactive power, imbalance power, or harmonic power is added to the conventional real power-frequency droop control. The transient real power variations caused by this term are captured to realize DG series virtual impedance tuning. With the regulation of DG virtual impedance at fundamental positive sequence, fundamental negative sequence, and harmonic frequencies, an accurate power sharing can be realized at the steady state. In order to activate the compensation scheme in multiple DG units in a synchronized manner, a low-bandwidth communication bus is adopted to send the compensation command from a microgrid central controller to DG unit local controllers, without involving any information from DG unit local controllers. The feasibility of the proposed method is verified by simulated and experimental results from a low-power three-phase microgrid prototype.