Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinyan Zhan is active.

Publication


Featured researches published by Jinyan Zhan.


Advances in Meteorology | 2013

Land Cover Mapping Based on Multisource Spatial Data Mining Approach for Climate Simulation: A Case Study in the Farming-Pastoral Ecotone of North China

Feng Wu; Jinyan Zhan; Haiming Yan; Chenchen Shi; Juan Huang

The land use and land cover change (LUCC) is one of the prime driving forces of climate change. Most attention has been paid to the influence of accuracy of the land cover data in numerous climate simulation projects. The accuracy of the temporal land use data from Chinese Academy of Sciences (CAS) is higher than 90%, but the high-precision land cover data is absent. We overlaid land cover maps from different sources, and the grids with consistent classification were selected as the sample grids. By comparing the results obtained with different decision tree classifiers with the WEKA toolkit for data mining, it was found that the C4.5 algorithm was more suitable for converting land use data of CAS classification to land cover data of IGBP classification. We reset the decision rules with Net Primary Productivity (NPP) and Normalized Difference Vegetation Index (NDVI) as the indicators. The accuracy of the reclassified land cover data was proven to reach 83.14% through comparing with the Terrestrial Ecosystem Monitoring Sites and high resolution images. Therefore, it is feasible to produce the temporal land cover data with this method, which can be used as the parameters of dynamical downscaling in the regional climate simulation.


Advances in Meteorology | 2015

Scenario-Based Impact Assessment of Land Use/Cover and Climate Changes on Watershed Hydrology in Heihe River Basin of Northwest China

Feng Wu; Jinyan Zhan; Hongbo Su; Haiming Yan; Enjun Ma

This study evaluated hydrological impacts of potential climate and land use changes in Heihe River Basin of Northwest China. The future climate data for the simulation with Soil and Water Assessment Tool (SWAT) were prepared using a dynamical downscaling method. The future land uses were simulated with the Dynamic Land Use System (DLS) model by establishing Multinomial Logistic Regression (MNL) model for six land use types. In 2006–2030, land uses in the basin will experience a significant change with a prominent increase in urban areas, a moderate increase in grassland, and a great decrease in unused land. Besides, the simulation results showed that in comparison to those during 1981–2005 the temperature and precipitation during 2006–2030 will change by


Advances in Meteorology | 2013

Impacts of Land Cover Change on the Near-Surface Temperature in the North China Plain

Ruijie Qu; Xiaolin Cui; Haiming Yan; Enjun Ma; Jinyan Zhan

This study first tested and verified the ability of the Weather Research and Forecasting (WRF) model to simulate the near-surface temperature in the North China Plain. Then the static land cover data in the WRF were replaced, and thereafter the modified WRF model was used to explore the impacts of land cover change on the near-surface temperature in the North China Plain in year 1992 and year 2005. The results indicated that the land cover change in the North China Plain, which was characterized by the regional urbanization, had led to significant changes in the near-surface temperature, increasing the regional near-surface temperature by 0.03°C/year on average. The spatial pattern of the climate change basically corresponded to that of the land cover change; for example, the temperature increased most significantly in the regions mainly consisting of cities and built-up area. Besides, there were some variations in the degree and range of influence of the land cover change on the temperature among seasons. The result can provide important theoretical support for the adaptation to climate change, scientific land cover change management, and land use planning.


Frontiers of Earth Science in China | 2014

An equilibrium analysis of the land use structure in the Yunnan Province, China

Jiao Luo; Jinyan Zhan; Yingzhi Lin; Chunhong Zhao

Global land use structure is changing rapidly due to unceasing population growth and accelerated urbanization, which leads to fierce competition between the rigid demand for built-up area and the protection of cultivated land, forest, and grassland. It has been a great challenge to realize the sustainable development of land resources. Based on a computable general equilibrium model of land use change with a social accounting matrix dataset, this study implemented an equilibrium analysis of the land use structure in the Yunnan Province during the period of 2008–2020 under three scenarios, the baseline scenario, low TFP (total factor productivity) scenario, and high TFP scenario. The results indicated that under all three scenarios, area of cultivated land declined significantly along with a remarkable expansion of built-up area, while areas of forest, grassland, and unused land increased slightly. The growth rate of TFP had first negative and then positive effects on the expansion of built-up area and decline of cultivated land as it increased. Moreover, the simulated changes of both cultivated land and built-up area were the biggest under the low TFP scenario, and far exceeded the limit in the Overall Plan for Land Utilization in the Yunnan Province in 2020. The scenario-based simulation results are of important reference value for policy-makers in making land use decisions, balancing the fierce competition between the protection of cultivated land and the increasing demand for built-up area, and guaranteeing food security, ecological security, and the sustainable development of land resources.


Advances in Meteorology | 2015

Land Use Zoning for Conserving Ecosystem Services under the Impact of Climate Change: A Case Study in the Middle Reaches of the Heihe River Basin

Chenchen Shi; Jinyan Zhan; Yongwei Yuan; Feng Wu; Zhihui Li

Ecosystem services are the benefit human populations derive directly and indirectly from the natural environment. They suffer from both the human intervention, like land use zoning change, and natural intervention, like the climate change. Under the background of climate change, regulation services of ecosystem could be strengthened under proper land use zoning policy to mitigate the climate change. In this paper, a case study was conducted in the middle reaches of the Heihe River Basin to assess the ecosystem services conservation zoning under the change of land use associated with climate variations. The research results show the spatial impact of land use zoning on ecosystem services in the study area which are significant reference for the spatial optimization of land use zoning in preserving the key ecosystem services to mitigate the climate change. The research contributes to the growing literature in finely characterizing the ecosystem services zones altered by land use change to alleviate the impact of climate change, as there is no such systematic ecosystem zoning method before.


Advances in Meteorology | 2013

Impacts of Vegetation Change on the Regional Surface Climate: A Scenario-Based Analysis of Afforestation in Jiangxi Province, China

Enjun Ma; Anping Liu; Xing Li; Feng Wu; Jinyan Zhan

The afforestation is one of the most noticeable human activities that affect the climate through influencing not only the carbon sink but also the thermal properties of the land surface. This research accessed the potential effects of artificial vegetation change on the regional climate in Jiangxi Province, China. Based on simulation with the Weather Research and Forecasting (WRF) model, a comparative analysis was carried out on the future temperature and precipitation under four hypothetical vegetation cover scenarios. The simulation results indicated that the vegetation change would have significant effects on the regional climate. The simulated effects of annual average temperature showed a decreasing order: evergreen broadleaf > evergreen needleleaf > deciduous needleleaf > deciduous broadleaf, and the effects of annual average precipitation of the evergreen forests would be bigger than those of the deciduous forests. The deciduous forests play a positive role in decreasing the annual average temperature, while the evergreen forests promote the annual average temperature rise. Besides, the expansion of deciduous forests may result in severe drought in the summer in Jiangxi Province. These conclusions are of important policy implication to the future afforestation in Jiangxi Province, China, and other regions of the world.


Advances in Meteorology | 2015

Water Yield Variation due to Forestry Change in the Head-Water Area of Heihe River Basin, Northwest China

Feng Wu; Jinyan Zhan; Jiancheng Chen; Chao He; Qian Zhang

Understanding the effects of forestation on the hydrological process is crucial to protecting water resources. In this study, the upstream Heihe River Basin is selected as the study area, which is the water source area of the whole basin. The grassland and forest are the main land use types, the proportion of which in the total land area is 21% and 50%, respectively. Firstly, a scenario of forestation was designed with the actual land cover data in 1980. Then a scenario with simulated land cover data in 1980 was established, in which the forest area increases by 12%. Thereafter a hydrological simulation was carried out with the actual and simulated land cover maps and the climate observation data during 1980–2010. The results suggested that the total water yield increased by 12.57 mm under the scenario with land use change during 1980–2010 compared with the simulation with the actual land cover in 1980. However, the results also indicated that the surface runoff reduced by 22.17 mm during the same period, indicating the forest land has “sponge” effects on the water resource in the mountainous watershed. These results may provide important information that supports operational practices, such as forest regeneration programs and watershed restoration.


Frontiers of Earth Science in China | 2014

Environmental cost and pollution risk caused by the industrial transfer in Qinghai Province

Qun’ou Jiang; Chengcai Tang; Jinyan Zhan; Wei Zhang; Feng Wu

With the rising pressure due to energy consumption and costs of environmental protection and recovery, industrial transfer from the eastern to central and western areas has surged in China. However, extremely fragile ecological conditions and severe water shortage are significant hurdles for industry development in Western China. Whether the vulnerable environment can bear the pollution caused by the transferred industry from Eastern China becomes a significant issue. This study firstly estimates energy and environmental costs in different areas of China, and assesses the necessity to upgrade the industrial structure of Qinghai Province. Then the emissions of waste water, waste gas, and smoke caused by transferred industries are calculated by Input-Output Model. On the basis of the effect analysis of waste emission on environment, pollution risks of Qinghai province are assessed. The results illustrate that the costs of environmental protection and recovery in China have a gradient distribution, of which the energy efficiency is lower while environmental costs are higher in Western China. Industrial structure adjustment has different impacts on the pollution of different sectors. Although the development of machinery and equipment, hotels and catering services, and real estate, leasing, and business services has increased the emission of pollutants, it is offset by the decreasing emissions caused by other industries such as construction and metal products. Therefore, although economic development will increase environmental pollution, industrial adjustments can effectively decrease waste water and waste gas emissions to reduce the pollution risk. It should be noted that there are still tremendous challenges for industrial transfer in Qinghai Province to coordinate the environment and industry development.


Advances in Meteorology | 2014

Spatially explicit assessment of ecosystem resilience: an approach to adapt to climate changes

Haiming Yan; Jinyan Zhan; Bing Liu; Wei Huang; Zhihui Li

The ecosystem resilience plays a key role in maintaining a steady flow of ecosystem services and enables quick and flexible responses to climate changes, and maintaining or restoring the ecosystem resilience of forests is a necessary societal adaptation to climate change; however, there is a great lack of spatially explicit ecosystem resilience assessments. Drawing on principles of the ecosystem resilience highlighted in the literature, we built on the theory of dissipative structures to develop a conceptual model of the ecosystem resilience of forests. A hierarchical indicator system was designed with the influencing factors of the forest ecosystem resilience, including the stand conditions and the ecological memory, which were further disaggregated into specific indicators. Furthermore, indicator weights were determined with the analytic hierarchy process (AHP) and the coefficient of variation method. Based on the remote sensing data and forest inventory data and so forth, the resilience index of forests was calculated. The result suggests that there is significant spatial heterogeneity of the ecosystem resilience of forests, indicating it is feasible to generate large-scale ecosystem resilience maps with this assessment model, and the results can provide a scientific basis for the conservation of forests, which is of great significance to the climate change mitigation.


Advances in Meteorology | 2013

Scenario Analyses of Land Use Conversion in the North China Plain: An Econometric Approach

Jinyan Zhan; Feng Wu; Chenchen Shi; Fan Zhang; Zhihui Li

Scenario analysis and dynamic prediction of land use structure which involve many driving factors are helpful to investigate the mechanism of land use changes and even to optimize land use allocation for sustainable development. In this study, land use structure changes during 1988–2010 in North China Plain were discerned and the effects of various natural and socioeconomic driving factors on land use structure changes were quantitatively analyzed based on an econometric model. The key drivers of land use structure changes in the model are county-level net returns of land resource. In this research, we modified the net returns of each land use type for three scenarios, including business as usual (BAU) scenario, rapid economic growth (REG) scenario, and coordinated environmental sustainability (CES) scenario. The simulation results showed that, under different scenarios, future land use structures were different due to the competition among various land use types. The land use structure changes in North China Plain in the 40-year future will experience a transfer from cultivated land to built-up area, an increase of forestry, and decrease of grassland. The research will provide some significant references for land use management and planning in the study area.

Collaboration


Dive into the Jinyan Zhan's collaboration.

Top Co-Authors

Avatar

Feng Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Haiming Yan

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Zhihui Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fan Zhang

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Wei Liu

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Chenchen Shi

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Enjun Ma

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Qian Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongbo Su

Florida Atlantic University

View shared research outputs
Top Co-Authors

Avatar

Chao Wang

Beijing Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge