Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinyao Liu is active.

Publication


Featured researches published by Jinyao Liu.


Advanced Materials | 2010

Self-assembly of hyperbranched polymers and its biomedical applications.

Yongfeng Zhou; Wei Huang; Jinyao Liu; Xinyuan Zhu; Deyue Yan

Hyperbranched polymers (HBPs) are highly branched macromolecules with a three-dimensional dendritic architecture. Due to their unique topological structure and interesting physical/chemical properties, HBPs have attracted wide attention from both academia and industry. In this paper, the recent developments in HBP self-assembly and their biomedical applications have been comprehensively reviewed. Many delicate supramolecular structures from zero-dimension (0D) to three-dimension (3D), such as micelles, fibers, tubes, vesicles, membranes, large compound vesicles and physical gels, have been prepared through the solution or interfacial self-assembly of amphiphilic HBPs. In addition, these supramolecular structures have shown promising applications in the biomedical areas including drug delivery, protein purification/detection/delivery, gene transfection, antibacterial/antifouling materials and cytomimetic chemistry. Such developments promote the interdiscipline researches among surpramolecular chemistry, biomedical chemistry, nano-technology and functional materials.


Biomacromolecules | 2011

Redox-Responsive Polyphosphate Nanosized Assemblies: A Smart Drug Delivery Platform for Cancer Therapy

Jinyao Liu; Yan Pang; Wei Huang; Zhaoyang Zhu; Xinyuan Zhu; Yongfeng Zhou; Deyue Yan

Novel redox-responsive polyphosphate nanosized assemblies based on amphiphilic hyperbranched multiarm copolyphosphates (HPHSEP-star-PEP(x)) with backbone redox-responsive, good biocompatibility, and biodegradability simultaneously have been designed and prepared successfully. The hydrophobic core and hydrophilic multiarm of HPHSEP-star-PEP(x) are composed of hyperbranched and linear polyphosphates, respectively. Benefiting from the amphiphilicity, HPHSEP-star-PEP(x) can self-assemble into spherical micellar nanoparticles in aqueous media with tunable size from about 70 to 100 nm via adjusting the molecular weight of PEP multiarm. Moreover, HPHSEP-star-PEP(x) micellar structure can be destructed under reductive environment and result in a triggered drug release behavior. The glutathione-mediated intracellular drug delivery was investigated against a HeLa human cervical carcinoma cell line, and the results indicate that doxorubicin-loaded (DOX-loaded) HPHSEP-star-PEP(x) micelles show higher cellular proliferation inhibition against glutathione monoester pretreated HeLa cells than that of the nonpretreated ones. In contrast, the DOX-loaded micelles exhibit lower inhibition against buthionine sulfoximine pretreated HeLa cells. These results suggest that such redox-responsive polyphosphate micelles can rapidly deliver anticancer drugs into the nuclei of tumor cells enhancing the inhibition of cell proliferation and provide a favorable platform to construct excellent drug delivery systems for cancer therapy.


Biomacromolecules | 2011

Bioreducible Micelles Self-Assembled from Amphiphilic Hyperbranched Multiarm Copolymer for Glutathione-Mediated Intracellular Drug Delivery

Jinyao Liu; Yan Pang; Wei Huang; Xiaohua Huang; Lili Meng; Xinyuan Zhu; Yongfeng Zhou; Deyue Yan

A new type of biodegradable micelles for glutathione-mediated intracellular drug delivery was developed on the basis of an amphiphilic hyperbranched multiarm copolymer (H40-star-PLA-SS-PEP) with disulfide linkages between the hydrophobic polyester core and hydrophilic polyphosphate arms. The resulting copolymers were characterized by nuclear magnetic resonance (NMR), Fourier transformed infrared (FTIR), gel permeation chromatography (GPC), and differential scanning calorimeter (DSC) techniques. Benefiting from amphiphilic structure, H40-star-PLA-SS-PEP was able to self-assemble into micelles in aqueous solution with an average diameter of 70 nm. Moreover, the hydrophilic polyphosphate shell of these micelles could be detached under reduction-stimulus by in vitro evaluation, which resulted in a rapid drug release due to the destruction of micelle structure. The glutathione-mediated intracellular drug delivery was investigated against a Hela human cervical carcinoma cell line. Flow cytometry and confocal laser scanning microscopy (CLSM) measurements demonstrated that H40-star-PLA-SS-PEP micelles exhibited a faster drug release in glutathione monoester (GSH-OEt) pretreated Hela cells than that in the nonpretreated cells. Cytotoxicity assay of the doxorubicin-loaded (DOX-loaded) micelles indicated the higher cellular proliferation inhibition against 10 mM of GSH-OEt pretreated Hela cells than that of the nonpretreated ones. As expected, the DOX-loaded micelles showed lower inhibition against 0.1 mM of buthionine sulfoximine (BSO) pretreated Hela cells. These reduction-responsive and biodegradable micelles show a potential to improve the antitumor efficacy of hydrophobic chemotherapeutic drugs.


Biomacromolecules | 2011

Supramolecular Copolymer Micelles Based on the Complementary Multiple Hydrogen Bonds of Nucleobases for Drug Delivery

Dali Wang; Yue Su; Chengyu Jin; Bangshang Zhu; Yan Pang; Lijuan Zhu; Jinyao Liu; Chunlai Tu; Deyue Yan; Xinyuan Zhu

Novel supramolecular copolymer micelles with stimuli-responsive abilities were successfully prepared through the complementary multiple hydrogen bonds of nucleobases and then applied for rapid intracellular release of drugs. First, both adenine-terminated poly(ε-caprolactone) (PCL-A) and uracil-terminated poly(ethylene glycol) (PEG-U) were synthesized. The supramolecular amphiphilic block copolymers (PCL-A:U-PEG) were formed based on multiple hydrogen bonding interactions between PCL-A and PEG-U. The micelles self-assembled from PCL-A:U-PEG were sufficiently stable in water but prone to fast aggregation in acidic condition due to the dynamic and sensitive nature of noncovalent interactions. The low cytotoxicity of supramolecular copolymer micelles was confirmed by MTT assay against NIH/3T3 normal cells. As a hydrophobic anticancer model drug, doxorubicin (DOX) was encapsulated into these supramolecular copolymer micelles. In vitro release studies demonstrated that the release of DOX from micelles was significantly faster at mildly acid pH of 5.0 compared to physiological pH. MTT assay against HeLa cancer cells showed DOX-loaded micelles had high anticancer efficacy. Hence, these supramolecular copolymer micelles based on the complementary multiple hydrogen bonds of nucleobases are very promising candidates for rapid controlled release of drugs.


Biomaterials | 2010

Self-Assembly of phospholipid-analogous hyperbranched polymers nanomicelles for drug delivery

Jinyao Liu; Yan Pang; Wei Huang; Xinyuan Zhu; Yongfeng Zhou; Deyue Yan

A drug nanocarrier has been constructed through self-assembly of phospholipid analogous hyperbranched polymers (HPHEEP-alkyls) which contain a polar hyperbranched polyphosphate headgroup and many aliphatic tails. HPHEEP-alkyls were synthesized by self-condensing ring-opening polymerization of 2-(2-hydroxyethoxy)ethoxy-2-oxo-1,3,2-dioxaphospholane and then capped with palmitoyl chloride. Benefiting from the amphiphilic structure with the hydrophilic core and many hydrophobic tails, HPHEEP-alkyls were able to self-assemble into nanomicelles in aqueous media. Importantly, the size of the nanomicelles could be controlled conveniently from 98 to 215 nm by adjusting the capped fraction of the hydroxyl groups with hydrophobic palmityls. The excellent biocompatibility of these nanomicelles was confirmed by methyl tetrazolium assay and acridine orange/ethidium bromide double staining against COS-7 cells. Confocal laser scanning microscopy and flow cytometry analysis demonstrated their good cell permeability, i.e. these nanomicelles were easily internalized by vivid cells and mainly located in the cytoplasm rather than nucleolus. Chlorambucil-loaded nanomicelles were investigated for proliferation inhibition of a MCF-7 breast cancer cell line in vitro, and the chlorambucil dose required for 50% cellular growth inhibition was found to be 5 microg/mL. All of these results indicate that HPHEEP-alkyls nanomicelles can be used as safe and promising drug nanocarriers.


Biomacromolecules | 2013

Therapeutic nanocarriers with hydrogen peroxide-triggered drug release for cancer treatment.

Jinyao Liu; Yan Pang; Zhaoyang Zhu; Dali Wang; Chunting Li; Wei Huang; Xinyuan Zhu; Deyue Yan

Chemotherapy is an important modality in cancer treatment. The major challenge of recent works in this research field is to develop new types of smart nanocarriers that can respond selectively to cancer cell-specific conditions and realize rapid drug release in target cells. In the present study, a reactive oxygen species-responsive nanocarrier has been successfully self-assembled from an amphiphilic hyperbranched polymer consisting of alternative hydrophobic selenide groups and hydrophilic phosphate segments in the dendritic backbone. Because the hydrophobic selenide groups transformed into the hydrophilic selenone groups after oxidation under the exclusive oxidative microenvironment within cancer cells, the amphiphilic hyperbranched precursors become hydrophilic ones. As a result, the nanocarriers were rapidly disassembled in target cells, resulting in fast intracellular drug release. The hydrophilic products of oxidation can be degraded into harmless small molecular species via the enzymatic digestion of the phosphate segments and then eliminated by renal excretion. Meanwhile, the reactive selenium-containing nanocarrier possesses a potent intrinsic anticancer effect since selenium compounds can produce antitumor metabolites which induce apoptosis of cancer cells efficiently. Therefore, this type of therapeutic nanocarriers with a unique drug release mechanism based on an amphiphilic-to-hydrophilic transition provides a new platform for targeted drug delivery and combined therapy.


Biomacromolecules | 2010

Hyperbranched Polyphosphates for Drug Delivery Application: Design, Synthesis, and In Vitro Evaluation

Jinyao Liu; Wei Huang; Yan Pang; Xinyuan Zhu; Yongfeng Zhou; Deyue Yan

A water-soluble hyperbranched polyphosphate (HPHEEP) was synthesized through the self-condensation ring-opening polymerization (SCROP) of 2-(2-hydroxyethoxy)ethoxy-2-oxo-1,3,2-dioxaphospholane (HEEP), and its suitability as a drug carrier was then evaluated in vitro. Methyl tetrazolium (MTT) and live/dead staining assays indicated that HPHEEP had excellent biocompatibility against COS-7 cells. The good biodegradability of HPHEEP was observed by NMR analysis, and the degradation products were nontoxic to COS-7 cells. Flow cytometry and confocal laser scanning microscopy analyses suggested that HPHEEP could be easily internalized by vivid cells and preferentially accumulated in the perinuclear region. Furthermore, a hydrophobic anticancer drug, chlorambucil, was used as a model drug and covalently bound to HPHEEP. The chlorambucil dose of the conjugate and free drug required for 50% cellular growth inhibition were 75 and 50 microg/mL, respectively, according to MTT assay against an MCF-7 breast cancer cell line in vitro. This high activity of the conjugate may be attributed to the biodegradability of HPHEEP so as to release the chlorambucil in cells. Therefore, on the basis of its biocompatibility and biodegradability, HPHEEP could provide a charming opportunity to design some excellent drug delivery systems for therapeutic applications.


Langmuir | 2010

Self-Assembled Micelles from an Amphiphilic Hyperbranched Copolymer with Polyphosphate Arms for Drug Delivery

Jinyao Liu; Wei Huang; Yan Pang; Xinyuan Zhu; Yongfeng Zhou; Deyue Yan

A novel type of amphiphilic hyperbranched multiarm copolymer [H40-star-(PLA-b-PEP-OH)] was synthesized through a two-step ring-opening polymerization (ROP) procedure and applied to drug delivery. First, Boltorn H40 was used as macroinitiator for the ROP of L-lactide to form the intermediate (H40-star-PLA-OH). Then, the ROP of ethyl ethylene phosphate was further initiated to produce H40-star-(PLA-b-PEP-OH). The resulting hyperbranched multiarm copolymers were characterized by (1)H, (13)C, and (31)P NMR, GPC, and FTIR spectra. Benefiting from the amphiphilic structure, H40-star-(PLA-b-PEP-OH) was able to self-assemble into micelles in water with an average diameter of 130 nm. In vitro evaluation of these micelles demonstrated their excellent biocompatibility and efficient cellular uptake by methyl tetrazolium assay, flow cytometry, and confocal laser scanning microscopy measurements. Doxorubicin-loaded micelles were investigated for the proliferation inhibition of a Hela human cervical carcinoma cell line, and the Doxorubicin dose required for 50% cellular growth inhibition was found to be 1 microg/mL. These results indicate that H40-star-(PLA-b-PEP-OH) micelles can be used as safe, promising drug-delivery systems.


Biomaterials | 2012

Hyperbranched polydiselenide as a self assembling broad spectrum anticancer agent

Jinyao Liu; Yan Pang; Jun Chen; Ping Huang; Wei Huang; Xinyuan Zhu; Deyue Yan

This work presents a highly efficient, broad spectrum and self-delivery anticancer agent, which is the hyperbranched polydiselenide (HPSe) consisting of alternative hydrophobic diselenide groups and hydrophilic phosphate segments in the backbone framework. The data of systematic evaluations demonstrate that HPSe is very potent to inhibit the proliferation of many forms of cancer cell. The dose of HPSe required for growth inhibition of 50% (IC(50)) in all of the tested cancer cell lines is within the concentration range between 1 and 2.5 μg mL(-1) with the incubation time of 72 h. Furthermore, the amphiphilic HPSe can self-assembly into nanomicelles with an average diameter of 50 nm and spontaneously enter into tumor cells by the enhanced permeability and retention (EPR) effect. Besides, other hydrophobic anticancer drugs such as doxorubicin (DOX) can be encapsulated into HPSe micelles for combining therapy.


Biomacromolecules | 2011

Polymeric micelles with water-insoluble drug as hydrophobic moiety for drug delivery.

Guolin Li; Jinyao Liu; Yan Pang; Ruibin Wang; Limin Mao; Deyue Yan; Xinyuan Zhu; Jian Sun

The hydrophobic block of polymeric micelles formed by amphiphilic copolymers has no direct therapeutical effect, and the metabolites of these hydrophobic segments might lead to some unexpected side effects. Here the hydrophobic core of polymeric micelles is replaced by highly water-insoluble drugs themselves, forming a new micellar drug delivery system. By grafting hydrophobic drugs of paclitaxel (PTX) onto the surface of hydrophilic hyperbranched poly(ether-ester) (HPEE), we constructed an amphiphilic copolymer (HPEE-PTX). HPEE-PTX could self-assemble into micellar nanoparticles in aqueous solution with tunable drug contents from 4.1 to 10.7%. Moreover, the hydrolysis of HPEE-PTX in serum resulted in the cumulative release of PTX. In vivo evaluation indicated that the dosage toleration of PTX in mice had been improved greatly and HPEE-PTX micellar nanoparticles could be used as an efficient prodrug with satisfactory therapeutical effect. We believe that most of the lipophilic drugs could improve their characters through this strategy.

Collaboration


Dive into the Jinyao Liu's collaboration.

Top Co-Authors

Avatar

Deyue Yan

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xinyuan Zhu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yan Pang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Wei Huang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yongfeng Zhou

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Bangshang Zhu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yue Su

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jieli Wu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Ruibin Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Dali Wang

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge