Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinyao Tang is active.

Publication


Featured researches published by Jinyao Tang.


Science | 2006

An Integrated Logic Circuit Assembled on a Single Carbon Nanotube

Zhihong Chen; Joerg Appenzeller; Yu-Ming Lin; Jennifer Sippel-Oakley; Andrew G. Rinzler; Jinyao Tang; Shalom J. Wind; Paul M. Solomon; Phaedon Avouris

Single-walled carbon nanotubes (SWCNTs) have been shown to exhibit excellent electrical properties, such as ballistic transport over several hundred nanometers at room temperature. Field-effect transistors (FETs) made from individual tubes show dc performance specifications rivaling those of state-of-the-art silicon devices. An important next step is the fabrication of integrated circuits on SWCNTs to study the high-frequency ac capabilities of SWCNTs. We built a five-stage ring oscillator that comprises, in total, 12 FETs side by side along the length of an individual carbon nanotube. A complementary metal-oxide semiconductor‐type architecture was achieved by adjusting the gate work functions of the individual p-type and n-type FETs used.


Nature Nanotechnology | 2011

Solution-processed core–shell nanowires for efficient photovoltaic cells

Jinyao Tang; Ziyang Huo; Sarah Brittman; Hanwei Gao; Peidong Yang

Semiconductor nanowires are promising for photovoltaic applications, but, so far, nanowire-based solar cells have had lower efficiencies than planar cells made from the same materials, even allowing for the generally lower light absorption of nanowires. It is not clear, therefore, if the benefits of the nanowire structure, including better charge collection and transport and the possibility of enhanced absorption through light trapping, can outweigh the reductions in performance caused by recombination at the surface of the nanowires and at p-n junctions. Here, we fabricate core-shell nanowire solar cells with open-circuit voltage and fill factor values superior to those reported for equivalent planar cells, and an energy conversion efficiency of ∼5.4%, which is comparable to that of equivalent planar cells despite low light absorption levels. The device is made using a low-temperature solution-based cation exchange reaction that creates a heteroepitaxial junction between a single-crystalline CdS core and single-crystalline Cu2S shell. We integrate multiple cells on single nanowires in both series and parallel configurations for high output voltages and currents, respectively. The ability to produce efficient nanowire-based solar cells with a solution-based process and Earth-abundant elements could significantly reduce fabrication costs relative to existing high-temperature bulk material approaches.


Nano Letters | 2013

A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting

Chong Liu; Jinyao Tang; Hao Ming Chen; Bin Liu; Peidong Yang

Artificial photosynthesis, the biomimetic approach to converting sunlights energy directly into chemical fuels, aims to imitate nature by using an integrated system of nanostructures, each of which plays a specific role in the sunlight-to-fuel conversion process. Here we describe a fully integrated system of nanoscale photoelectrodes assembled from inorganic nanowires for direct solar water splitting. Similar to the photosynthetic system in a chloroplast, the artificial photosynthetic system comprises two semiconductor light absorbers with large surface area, an interfacial layer for charge transport, and spatially separated cocatalysts to facilitate the water reduction and oxidation. Under simulated sunlight, a 0.12% solar-to-fuel conversion efficiency is achieved, which is comparable to that of natural photosynthesis. The result demonstrates the possibility of integrating material components into a functional system that mimics the nanoscopic integration in chloroplasts. It also provides a conceptual blueprint of modular design that allows incorporation of newly discovered components for improved performance.


Science | 2010

Translocation of Single-Stranded DNA through Single-Walled Carbon Nanotubes

Haitao Liu; Jin He; Jinyao Tang; Hao Liu; Pei Pang; Di Cao; Predrag S. Krstic; Sony Joseph; Stuart Lindsay; Colin Nuckolls

Carbon Nanotube Bridge for DNA Transport The nanoporosity of carbon nanotubes has been exploited in the control of molecular transport—for example, in creating membranes. Liu et al. (p. 64) fabricated devices in which one single-walled carbon nanotube connects two fluid reservoirs. In some of these devices, apparently those in which the nanotube is metallic, the ionic conductivity is anomalously higher than that expected from the bulk resistivity of the electrolyte. This high conductivity was exploited for the transport of single-stranded DNA, which was accompanied by large but transient increases in the ion current. Transfer of DNA by electrophoresis through some carbon nanotubes is accompanied by giant current pulses. We report the fabrication of devices in which one single-walled carbon nanotube spans a barrier between two fluid reservoirs, enabling direct electrical measurement of ion transport through the tube. A fraction of the tubes pass anomalously high ionic currents. Electrophoretic transport of small single-stranded DNA oligomers through these tubes is marked by large transient increases in ion current and was confirmed by polymerase chain reaction analysis. Each current pulse contains about 107 charges, an enormous amplification of the translocated charge. Carbon nanotubes simplify the construction of nanopores, permit new types of electrical measurements, and may open avenues for control of DNA translocation.


Nano Letters | 2012

Zn-Doped p-Type Gallium Phosphide Nanowire Photocathodes from a Surfactant-Free Solution Synthesis

Chong Liu; Jianwei Sun; Jinyao Tang; Peidong Yang

Gallium phosphide (GaP) nanowire photocathodes synthesized using a surfactant-free solution-liquid-solid (SLS) method were investigated for their photoelectrochemical evolution of hydrogen. Zinc as a p-type dopant was introduced into the nanowires during synthesis to optimize the photocathodes response. Investigation of the electrical properties of Zn-doped GaP nanowires confirmed their p-type conductivity. After optimization of the nanowire diameter and Zn doping concentration, higher absorbed photon-to-current efficiency (APCE) over the spectrum was achieved. The versatility of the SLS synthesis and the capability to control the electrical properties suggest that our approach could be generalized to other III-V and II-VI semiconductors.


Nature Nanotechnology | 2016

Programmable artificial phototactic microswimmer

Baohu Dai; Jizhuang Wang; Ze Xiong; Xiaojun Zhan; Wei Dai; Chien-Cheng Li; Shien-Ping Feng; Jinyao Tang

Phototaxis is commonly observed in motile photosynthetic microorganisms. For example, green algae are capable of swimming towards a light source (positive phototaxis) to receive more energy for photosynthesis, or away from a light source (negative phototaxis) to avoid radiation damage or to hide from predators. Recently, with the aim of applying nanoscale machinery to biomedical applications, various inorganic nanomotors based on different propulsion mechanisms have been demonstrated. The only method to control the direction of motion of these self-propelled micro/nanomotors is to incorporate a ferromagnetic material into their structure and use an external magnetic field for steering. Here, we show an artificial microswimmer that can sense and orient to the illumination direction of an external light source. Our microswimmer is a Janus nanotree containing a nanostructured photocathode and photoanode at opposite ends that release cations and anions, respectively, propelling the microswimmer by self-electrophoresis. Using chemical modifications, we can control the zeta potential of the photoanode and program the microswimmer to exhibit either positive or negative phototaxis. Finally, we show that a school of microswimmers mimics the collective phototactic behaviour of green algae in solution.


Small | 2016

High-Performance Flexible Transparent Electrode with an Embedded Metal Mesh Fabricated by Cost-Effective Solution Process

Arshad Khan; Sangeon Lee; Taehee Jang; Ze Xiong; Cuiping Zhang; Jinyao Tang; L. Jay Guo; Wen-Di Li

A new structure of flexible transparent electrodes is reported, featuring a metal mesh fully embedded and mechanically anchored in a flexible substrate, and a cost-effective solution-based fabrication strategy for this new transparent electrode. The embedded nature of the metal-mesh electrodes provides a series of advantages, including surface smoothness that is crucial for device fabrication, mechanical stability under high bending stress, strong adhesion to the substrate with excellent flexibility, and favorable resistance against moisture, oxygen, and chemicals. The novel fabrication process replaces vacuum-based metal deposition with an electrodeposition process and is potentially suitable for high-throughput, large-volume, and low-cost production. In particular, this strategy enables fabrication of a high-aspect-ratio (thickness to linewidth) metal mesh, substantially improving conductivity without considerably sacrificing transparency. Various prototype flexible transparent electrodes are demonstrated with transmittance higher than 90% and sheet resistance below 1 ohm sq(-1) , as well as extremely high figures of merit up to 1.5 × 10(4) , which are among the highest reported values in recent studies. Finally using our embedded metal-mesh electrode, a flexible transparent thin-film heater is demonstrated with a low power density requirement, rapid response time, and a low operating voltage.


Nature Nanotechnology | 2016

Single-nanowire photoelectrochemistry

Yude Su; Chong Liu; Sarah Brittman; Jinyao Tang; Anthony Fu; Nikolay Kornienko; Qiao Kong; Peidong Yang

Photoelectrochemistry is one of several promising approaches for the realization of efficient solar-to-fuel conversion. Recent work has shown that photoelectrodes made of semiconductor nano-/microwire arrays can have better photoelectrochemical performance than their planar counterparts because of their unique properties, such as high surface area. Although considerable research effort has focused on studying wire arrays, the inhomogeneity in the geometry, doping, defects and catalyst loading present in such arrays can obscure the link between these properties and the photoelectrochemical performance of the wires, and correlating performance with the specific properties of individual wires is difficult because of ensemble averaging. Here, we show that a single-nanowire-based photoelectrode platform can be used to reliably probe the current-voltage (I-V) characteristics of individual nanowires. We find that the photovoltage output of ensemble array samples can be limited by poorly performing individual wires, which highlights the importance of improving nanowire homogeneity within an array. Furthermore, the platform allows the flux of photogenerated electrons to be quantified as a function of the lengths and diameters of individual nanowires, and we find that the flux over the entire nanowire surface (7-30 electrons nm(-2) s(-1)) is significantly reduced as compared with that of a planar analogue (∼1,200 electrons nm(-2) s(-1)). Such characterization of the photogenerated carrier flux at the semiconductor/electrolyte interface is essential for designing nanowire photoelectrodes that match the activity of their loaded electrocatalysts.


ACS Nano | 2016

Simultaneous Thermoelectric Property Measurement and Incoherent Phonon Transport in Holey Silicon

Jongwoo Lim; Hung-Ta Wang; Jinyao Tang; Sean C. Andrews; Hongyun So; Jaeho Lee; Dong Hyun Lee; Thomas P. Russell; Peidong Yang

Block copolymer patterned holey silicon (HS) was successfully integrated into a microdevice for simultaneous measurements of Seebeck coefficient, electrical conductivity, and thermal conductivity of the same HS microribbon. These fully integrated HS microdevices provided excellent platforms for the systematic investigation of thermoelectric transport properties tailored by the dimensions of the periodic hole array, that is, neck and pitch size, and the doping concentrations. Specifically, thermoelectric transport properties of HS with a neck size in the range of 16-34 nm and a fixed pitch size of 60 nm were characterized, and a clear neck size dependency was shown in the doping range of 3.1 × 10(18) to 6.5 × 10(19) cm(-3). At 300 K, thermal conductivity as low as 1.8 ± 0.2 W/mK was found in HS with a neck size of 16 nm, while optimized zT values were shown in HS with a neck size of 24 nm. The controllable effects of holey array dimensions and doping concentrations on HS thermoelectric performance could aid in improving the understanding of the phonon scattering process in a holey structure and also in facilitating the development of silicon-based thermoelectric devices.


Advanced Materials | 2017

A Silicon Nanowire as a Spectrally Tunable Light-Driven Nanomotor

Jizhuang Wang; Ze Xiong; Xiaojun Zhan; Baohu Dai; Jing Zheng; Jun Liu; Jinyao Tang

Over the last decades, scientists have endeavored to develop nanoscopic machines and envisioned that these tiny machines could be exploited in biomedical applications and novel material fabrication. Here, a visible-/near-infrared light-driven nanomotor based on a single silicon nanowire is reported. The silicon nanomotor harvests energy from light and propels itself by the self-electrophoresis mechanism. Due to the high efficiency, the silicon nanowire can be readily driven by visible and near-infrared illumination at ultralow light intensity (≈3 mW cm-2 ). The experimental study and numerical simulation also show that the detailed structure around the concentrated reaction center determines the migration behavior of the nanomotor. Importantly, due to the optical resonance inside the silicon nanowire, the spectral response of the nanowire-based nanomotor can be readily modulated by the nanowires diameter. Compared to other methods, light controlling potentially offers more freedom and flexibility, as light can be modulated not only with its intensity and direction, but also with the frequency and polarities. This nanowire motor demonstrates a step forward to harness the advantages of light, which opens up new opportunities for the realization of many novel functions such as multiple channels communication to nanorobots and controllable self-assembly.

Collaboration


Dive into the Jinyao Tang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ze Xiong

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Peidong Yang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaojun Zhan

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Baohu Dai

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge