Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinze Liu is active.

Publication


Featured researches published by Jinze Liu.


Nucleic Acids Research | 2010

MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery

Kai Wang; Darshan Singh; Zheng Zeng; Stephen J. Coleman; Yan Huang; Gleb L. Savich; Xiaping He; Piotr A. Mieczkowski; Sara A. Grimm; Charles M. Perou; James N. MacLeod; Derek Y. Chiang; Jan F. Prins; Jinze Liu

The accurate mapping of reads that span splice junctions is a critical component of all analytic techniques that work with RNA-seq data. We introduce a second generation splice detection algorithm, MapSplice, whose focus is high sensitivity and specificity in the detection of splices as well as CPU and memory efficiency. MapSplice can be applied to both short (<75 bp) and long reads (≥75 bp). MapSplice is not dependent on splice site features or intron length, consequently it can detect novel canonical as well as non-canonical splices. MapSplice leverages the quality and diversity of read alignments of a given splice to increase accuracy. We demonstrate that MapSplice achieves higher sensitivity and specificity than TopHat and SpliceMap on a set of simulated RNA-seq data. Experimental studies also support the accuracy of the algorithm. Splice junctions derived from eight breast cancer RNA-seq datasets recapitulated the extensiveness of alternative splicing on a global level as well as the differences between molecular subtypes of breast cancer. These combined results indicate that MapSplice is a highly accurate algorithm for the alignment of RNA-seq reads to splice junctions. Software download URL: http://www.netlab.uky.edu/p/bioinfo/MapSplice.


PLOS Genetics | 2013

Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci

Christopher L. Schardl; Carolyn A. Young; Uljana Hesse; Stefan G. Amyotte; Kalina Andreeva; Patrick J. Calie; Damien J. Fleetwood; David Haws; Neil Moore; Birgitt Oeser; Daniel G. Panaccione; Kathryn Schweri; Christine R. Voisey; Mark L. Farman; Jerzy W. Jaromczyk; Bruce A. Roe; Donal M. O'Sullivan; Barry Scott; Paul Tudzynski; Zhiqiang An; Elissaveta G. Arnaoudova; Charles T. Bullock; Nikki D. Charlton; Li Chen; Murray P. Cox; Randy D. Dinkins; Simona Florea; Anthony E. Glenn; Anna Gordon; Ulrich Güldener

The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some—including the infamous ergot alkaloids—have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.


languages and compilers for parallel computing | 2006

UTS: an unbalanced tree search benchmark

Stephen L. Olivier; Jun Huan; Jinze Liu; Jan F. Prins; James Dinan; P. Sadayappan; Chau-Wen Tseng

This paper presents an unbalanced tree search (UTS) benchmark designed to evaluate the performance and ease of programming for parallel applications requiring dynamic load balancing. We describe algorithms for building a variety of unbalanced search trees to simulate different forms of load imbalance. We created versions of UTS in two parallel languages, OpenMP and Unified Parallel C (UPC), using work stealing as the mechanism for reducing load imbalance. We benchmarked the performance of UTS on various parallel architectures, including shared-memory systems and PC clusters. We found it simple to implement UTS in both UPC and OpenMP, due to UPCs shared-memory abstractions. Results show that both UPC and OpenMP can support efficient dynamic load balancing on shared-memory architectures. However, UPC cannot alleviate the underlying communication costs of distributed-memory systems. Since dynamic load balancing requires intensive communication, performance portability remains difficult for applications such as UTS and performance degrades on PC clusters. By varying key work stealing parameters, we expose important tradeoffs between the granularity of load balance, the degree of parallelism, and communication costs.


Nucleic Acids Research | 2013

DiffSplice: The genome-wide detection of differential splicing events with RNA-seq

Yin Hu; Yan Huang; Ying Du; Christian F. Orellana; Darshan Singh; Amy R. Johnson; Anaı̈s Monroy; Pei Fen Kuan; Scott M. Hammond; Liza Makowski; Scott H. Randell; Derek Y. Chiang; D. Neil Hayes; Corbin D. Jones; Yufeng Liu; Jan F. Prins; Jinze Liu

The RNA transcriptome varies in response to cellular differentiation as well as environmental factors, and can be characterized by the diversity and abundance of transcript isoforms. Differential transcription analysis, the detection of differences between the transcriptomes of different cells, may improve understanding of cell differentiation and development and enable the identification of biomarkers that classify disease types. The availability of high-throughput short-read RNA sequencing technologies provides in-depth sampling of the transcriptome, making it possible to accurately detect the differences between transcriptomes. In this article, we present a new method for the detection and visualization of differential transcription. Our approach does not depend on transcript or gene annotations. It also circumvents the need for full transcript inference and quantification, which is a challenging problem because of short read lengths, as well as various sampling biases. Instead, our method takes a divide-and-conquer approach to localize the difference between transcriptomes in the form of alternative splicing modules (ASMs), where transcript isoforms diverge. Our approach starts with the identification of ASMs from the splice graph, constructed directly from the exons and introns predicted from RNA-seq read alignments. The abundance of alternative splicing isoforms residing in each ASM is estimated for each sample and is compared across sample groups. A non-parametric statistical test is applied to each ASM to detect significant differential transcription with a controlled false discovery rate. The sensitivity and specificity of the method have been assessed using simulated data sets and compared with other state-of-the-art approaches. Experimental validation using qRT-PCR confirmed a selected set of genes that are differentially expressed in a lung differentiation study and a breast cancer data set, demonstrating the utility of the approach applied on experimental biological data sets. The software of DiffSplice is available at http://www.netlab.uky.edu/p/bioinfo/DiffSplice.


Bioinformatics | 2011

FDM: a graph-based statistical method to detect differential transcription using RNA-seq data.

Darshan Singh; Christian F. Orellana; Yin Hu; Corbin D. Jones; Yufeng Liu; Derek Y. Chiang; Jinze Liu; Jan F. Prins

Motivation: In eukaryotic cells, alternative splicing expands the diversity of RNA transcripts and plays an important role in tissue-specific differentiation, and can be misregulated in disease. To understand these processes, there is a great need for methods to detect differential transcription between samples. Our focus is on samples observed using short-read RNA sequencing (RNA-seq). Methods: We characterize differential transcription between two samples as the difference in the relative abundance of the transcript isoforms present in the samples. The magnitude of differential transcription of a gene between two samples can be measured by the square root of the Jensen Shannon Divergence (JSD*) between the genes transcript abundance vectors in each sample. We define a weighted splice-graph representation of RNA-seq data, summarizing in compact form the alignment of RNA-seq reads to a reference genome. The flow difference metric (FDM) identifies regions of differential RNA transcript expression between pairs of splice graphs, without need for an underlying gene model or catalog of transcripts. We present a novel non-parametric statistical test between splice graphs to assess the significance of differential transcription, and extend it to group-wise comparison incorporating sample replicates. Results: Using simulated RNA-seq data consisting of four technical replicates of two samples with varying transcription between genes, we show that (i) the FDM is highly correlated with JSD* (r=0.82) when average RNA-seq coverage of the transcripts is sufficiently deep; and (ii) the FDM is able to identify 90% of genes with differential transcription when JSD* >0.28 and coverage >7. This represents higher sensitivity than Cufflinks (without annotations) and rDiff (MMD), which respectively identified 69 and 49% of the genes in this region as differential transcribed. Using annotations identifying the transcripts, Cufflinks was able to identify 86% of the genes in this region as differentially transcribed. Using experimental data consisting of four replicates each for two cancer cell lines (MCF7 and SUM102), FDM identified 1425 genes as significantly different in transcription. Subsequent study of the samples using quantitative real time polymerase chain reaction (qRT-PCR) of several differential transcription sites identified by FDM, confirmed significant differences at these sites. Availability: http://csbio-linux001.cs.unc.edu/nextgen/software/FDM Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Animal Genetics | 2010

Structural annotation of equine protein-coding genes determined by mRNA sequencing.

Stephen J. Coleman; Zheng Zeng; Kai Wang; S. Luo; I. Khrebtukova; Michael J. Mienaltowski; G. P. Schroth; Jinze Liu; James N. MacLeod

The horse, like the majority of animal species, has a limited amount of species-specific expressed sequence data available in public databases. As a result, structural models for the majority of genes defined in the equine genome are predictions based on ab initio sequence analysis or the projection of gene structures from other mammalian species. The current study used Illumina-based sequencing of messenger RNA (RNA-seq) to help refine structural annotation of equine protein-coding genes and for a preliminary assessment of gene expression patterns. Sequencing of mRNA from eight equine tissues generated 293,758105 sequence tags of 35 bases each, equalling 10.28 gbp of total sequence data. The tag alignments represent approximately 207 × coverage of the equine mRNA transcriptome and confirmed transcriptional activity for roughly 90% of the protein-coding gene structures predicted by Ensembl and NCBI. Tag coverage was sufficient to refine the structural annotation for 11,356 of these predicted genes, while also identifying an additional 456 transcripts with exon/intron features that are not listed by either Ensembl or NCBI. Genomic locus data and intervals for the protein-coding genes predicted by the Ensembl and NCBI annotation pipelines were combined with 75,116 RNA-seq-derived transcriptional units to generate a consensus equine protein-coding gene set of 20,302 defined loci. Gene ontology annotation was used to compare the functional and structural categories of genes expressed in either a tissue-restricted pattern or broadly across all tissue samples.


Protein Science | 2006

Structure-based function inference using protein family-specific fingerprints

Deepak Bandyopadhyay; Jun Huan; Jinze Liu; Jan F. Prins; Jack Snoeyink; Wei Wang; Alexander Tropsha

We describe a method to assign a protein structure to a functional family using family‐specific fingerprints. Fingerprints represent amino acid packing patterns that occur in most members of a family but are rare in the background, a nonredundant subset of PDB; their information is additional to sequence alignments, sequence patterns, structural superposition, and active‐site templates. Fingerprints were derived for 120 families in SCOP using Frequent Subgraph Mining. For a new structure, all occurrences of these family‐specific fingerprints may be found by a fast algorithm for subgraph isomorphism; the structure can then be assigned to a family with a confidence value derived from the number of fingerprints found and their distribution in background proteins. In validation experiments, we infer the function of new members added to SCOP families and we discriminate between structurally similar, but functionally divergent TIM barrel families. We then apply our method to predict function for several structural genomics proteins, including orphan structures. Some predictions have been corroborated by other computational methods and some validated by subsequent functional characterization.


international conference on data engineering | 2008

Approximate Clustering on Distributed Data Streams

Qi Zhang; Jinze Liu; Wei Wang

We investigate the problem of clustering on distributed data streams. In particular, we consider the k-median clustering on stream data arriving at distributed sites which communicate through a routing tree. Distributed clustering on high speed data streams is a challenging task due to limited communication capacity, storage space, and computing power at each site. In this paper, we propose a suite of algorithms for computing (1 + epsiv) -approximate k-median clustering over distributed data streams under three different topology settings: topology-oblivious, height-aware, and path-aware. Our algorithms reduce the maximum per node transmission to polylog N (opposed to Omega(N) for transmitting the raw data). We have simulated our algorithms on a distributed stream system with both real and synthetic datasets composed of millions of data. In practice, our algorithms are able to reduce the data transmission to a small fraction of the original data. Moreover, our results indicate that the algorithms are scalable with respect to the data volume, approximation factor, and the number of sites.


international conference on computer vision | 2009

Unsupervised learning of high-order structural semantics from images

Jizhou Gao; Yin Hu; Jinze Liu; Ruigang Yang

Structural semantics are fundamental to understanding both natural and man-made objects from languages to buildings. They are manifested as repeated structures or patterns and are often captured in images. Finding repeated patterns in images, therefore, has important applications in scene understanding, 3D reconstruction, and image retrieval as well as image compression. Previous approaches in visual-pattern mining limited themselves by looking for frequently co-occurring features within a small neighborhood in an image. However, semantics of a visual pattern are typically defined by specific spatial relationships between features regardless of the spatial proximity. In this paper, semantics are represented as visual elements and geometric relationships between them. A novel unsupervised learning algorithm finds pair-wise associations of visual elements that have consistent geometric relationships sufficiently often. The algorithms are efficient - maximal matchings are determined without combinatorial search. High-order structural semantics are extracted by mining patterns that are composed of pairwise spatially consistent associations of visual elements. We demonstrate the effectiveness of our approach for discovering repeated visual patterns on a variety of image collections.


Nucleic Acids Research | 2013

BlackOPs: increasing confidence in variant detection through mappability filtering

Christopher R. Cabanski; Matthew D. Wilkerson; Matthew G. Soloway; Joel S. Parker; Jinze Liu; Jan F. Prins; J. S. Marron; Charles M. Perou; D. Neil Hayes

Identifying variants using high-throughput sequencing data is currently a challenge because true biological variants can be indistinguishable from technical artifacts. One source of technical artifact results from incorrectly aligning experimentally observed sequences to their true genomic origin (‘mismapping’) and inferring differences in mismapped sequences to be true variants. We developed BlackOPs, an open-source tool that simulates experimental RNA-seq and DNA whole exome sequences derived from the reference genome, aligns these sequences by custom parameters, detects variants and outputs a blacklist of positions and alleles caused by mismapping. Blacklists contain thousands of artifact variants that are indistinguishable from true variants and, for a given sample, are expected to be almost completely false positives. We show that these blacklist positions are specific to the alignment algorithm and read length used, and BlackOPs allows users to generate a blacklist specific to their experimental setup. We queried the dbSNP and COSMIC variant databases and found numerous variants indistinguishable from mapping errors. We demonstrate how filtering against blacklist positions reduces the number of potential false variants using an RNA-seq glioblastoma cell line data set. In summary, accounting for mapping-caused variants tuned to experimental setups reduces false positives and, therefore, improves genome characterization by high-throughput sequencing.

Collaboration


Dive into the Jinze Liu's collaboration.

Top Co-Authors

Avatar

Jan F. Prins

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Wang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zheng Zeng

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Wang

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Corbin D. Jones

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Yan Huang

University of Kentucky

View shared research outputs
Researchain Logo
Decentralizing Knowledge