Jiong Zheng
Southwest University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiong Zheng.
International Journal of Molecular Sciences | 2015
Jinsong Wu; Jiong Zheng; Xuejuan Xia; Jianquan Kan
Three kinds of polysaccharides, namely, BSP1A, BSP2A, and BSP3B, were isolated from raw bamboo shoot (Dendrocalamus latiflorus) after purification and classification by DEAE cellulose-52 (ion-exchange chromatography) and Sephadex G-50. The molecular weights of BSP1A, BSP2A, and BSP3B were 10.2, 17.0 and 20.0 kDa, respectively, which were measured through GPC (gel performance chromtatography) methods. BSP1A contained arabinose, glucose, and galactose in a molar ratio of 1.0:40.6:8.7. BSP2A and BSP3B contained arabinose, xylose, glucose, and galactose in molar ratios of 6.6:1.0:5.2:10.4 and 8.5:1.0:5.1:11.1, respectively. The existence of the O-glycopeptide bond in BSP1A, BSP2A, and BSP3B was demonstrated by β-elimination reaction. FTIR spectra of the three polysaccharides showed that both BSP2A and BSP3B contained β-d-pyranose sugar rings. However, BSP1A exhibited both β-d-pyranose and α-d-pyranose sugar rings. Congo red test indicated that BSP1A and BSP2A displayed triple helix structures, but BSP3B did not. NMR spectroscopy revealed that BSP1A may exhibit a β-1,6-Glucan pyran type as the main link, and few 1,6-glycosidic galactose pyranose and arabinose bonds were connected; BSP2A mainly demonstrated →5)β-Ara(1→and→3)β-Gal(1→connection. Furthermore, BSP3B mainly presented →3)β-Glu(1→and→3)β-Gal(1→connection and may also contain few other glycosidic bonds.
International Journal of Food Properties | 2015
Xuejuan Xia; Guannan Li; Furong Liao; Fusheng Zhang; Jiong Zheng; Jianquan Kan
The granular structure and physicochemical properties of starches isolated from grain amaranth cultivar K112 (Amaranthus cruentus L.) were studied in this study. Detailed physical and chemical analyses were performed by determining the granular morphology, crystallinity, particle size, thermal characteristics, blue value, enzyme susceptibility, and pasting properties. Results showed polygon-shaped A. cruentus L. K112 starch granules. The average diameter was 1.38 μm, in which half of the diameter was <2.91 μm. An A-type X-ray diffraction pattern was revealed with intense peaks of 15.2°, 17.5°, and 23.2°. The peak viscosity was 181 BU and the breakdown value was 2 BU. Amaranth starch obtained the highest pasting temperature (70.7°C) and enzymatic digestibility (absorbance value = 0.41 ± 0.013) compared with corn, cassava, and sweet potato starches.
Journal of Agricultural and Food Chemistry | 2017
Xuejuan Xia; Guannan Li; Yongbo Ding; Tingyuan Ren; Jiong Zheng; Jianquan Kan
This study investigated the hypolipidemic effect of whole grain Qingke (WGQ) and its influence on intestinal microbiota. Changes in the serum lipid, intestinal environment, and microbiota of Sprague-Dawley rats fed high-fat diets supplemented with different doses of WGQ were determined. Results showed that high doses of WGQ significantly decreased (P < 0.05) the Lees index, serum total cholesterol, low-density lipoprotein cholesterol, and non-high-density lipoprotein cholesterol levels whereas they increased the body weight of the rats. Cecal weight and short-chain fatty acid (SCFA) concentration increased with increasing WGQ dose. An Illumina-based sequencing approach showed that the relative abundance of putative SCFA-producing bacteria Prevotella and Anaerovibrio increased in the rats fed the WGQ diet. Principal component analysis revealed a significant difference in intestinal microbiota composition after the administration of the WGQ diet. These findings provide insights into the contribution of the intestinal microbiota to the hypolipidemic effect of WGQ.
Carbohydrate Polymers | 2016
Yongbo Ding; Jiong Zheng; Fusheng Zhang; Jianquan Kan
A new and convenient route to synthesizing retrograded starch nanoparticles (RS3NPs) through homogenization combined with a water-in-oil miniemulsion cross-linking technique was developed. The RS3NPs were optimized using Box-Behnken experimental design. Homogenization pressure (X1), oil/water ratio (X2), and surfactant (X3) were selected as independent variables, whereas particle size was considered as a dependent variable. Results indicated that homogenization pressure was the main contributing variable for particle size. The optimum values for homogenization pressure, oil/water ratio, and surfactant were 30MPa, 9.34:1, and 2.54g, respectively, whereas the particle size was predicted to be 288.2 nm. Morphological, physical, chemical, and functional properties of the RS3NPs were the assessed. Scanning electron microscopy and dynamic light scattering images showed that RS3NP granules were broken down to size of about 222.2nm. X-ray diffraction results revealed a disruption in crystallinity. The RS3NPs exhibited a slight decrease in To, but Tp and Tc increased and narrowest Tc-To. The solubility and swelling power were also increased. New peaks at 1594.84 and 1403.65cm(-1) were observed in the FTIR graph. However, homogenization minimally influenced the antidigestibility of RS3NPs. The absorption properties improved, and the adsorption kinetic described the contact time on the adsorption of captopril onto RS3NPs. In vitro release experiment indicated that the drug was released as follows: 21% after 2h in SGF, 42.78% at the end of 8h (2h in SGF and 6h in SIF), and 92.55% after 12h in SCF. These findings may help better utilize RS3NP in biomedical applications as a drug delivery material.
Food Science and Biotechnology | 2014
Xiyu Li; Yong Li; Xianzhi Huang; Jiong Zheng; Fusheng Zhang; Jianquan Kan
The angiotensin I-converting enzyme inhibitory peptide (ACEIP) was isolated and characterized from silkworm pupae and purified using Sephadex G-25 gel filtration. The structure and physicochemical properties of pupa ACEIP were analyzed. The α-P3 fraction exhibited the most potent ACE inhibitory activity. After purification via semi-preparative reverse-phase HPLC (RP-HPLC) and HPLC, the α-P3-6-b component was revealed to have the highest ACE inhibitory activity (IC50=28.3 μg/mL). Edman degradation revealed a Val-Glu-Ile-Ser amino acid sequence in which novel active sequences were identified. Physicochemical property testing showed that purified pupa ACEIP exhibits good solubility, heat resistance, and acid resistance that all indicate ACEIP derived from silkworm pupa is an excellent food-derived ACEIP.
International Journal of Food Properties | 2016
Mao Lin; Mingxiu Long; Guolin Li; Xi Chen; Jiong Zheng; Chao Li; Jianquan Kan
Peanut contains protein, oil, oleic acid, and linoleic acid its flavor is largely determined by pyrazine and aldehyde compounds. Both nutritional value and flavor are standards for measuring peanut quality. In this report, the contents of protein, oil, oleic acid, and linoleic acid were determined using near-infrared reflectance spectroscopy, and flavor compounds were identified using headspace solid-phase microextraction combined with gas chromatography–mass spectrometry in 12 different peanut cultivars. Our results showed that the content of oleic acid in raw peanut ranged from 35.69 to 82.79 g/100 g oil and the linoleic acid content ranged from 2.92 to 44.19 g/100 g oil, with high coefficients of variation. The coefficients of variation of protein and oil were lower, with content of 26.97–33.07 g/100 g raw materials and 45.53–55.53 g/100 g raw materials, respectively. Overall, 14 volatile components were isolated and identified, among which pyrazine and aldehyde compounds were the major aroma components in 12 different peanut cultivars.. Based on these results, peanuts with high protein content have high linoleic oil levels but low oleic oil levels, and roasted peanuts have a high content of pyrazines but low content of aldehydes. The results of this study will enable manufacturers to develop simple tests that predict the flavor of roasted peanuts based on their composition.
Carbohydrate Polymers | 2016
Yongbo Ding; Jiong Zheng; Xuejuan Xia; Tingyuan Ren; Jianquan Kan
This study aimed to assess the properties of resistant starch type IV (chemically modified starch, RS4) prepared from a new and convenient synthesis route by using ultrasonication combined with water-in-oil miniemulsion cross-linking technique. A three-factor Box-Behnken design and optimization was used to minimize particle size through the developed RS4 nanoparticles. The predicted minimized Z-Avel (576.1nm) under the optimum conditions of the process variables (ultrasonic power, 214.57W; sonication time, 114.73min; and oil/water ratio, 10.54:1) was very close to the experimental value (651.0nm) determined in a batch experiment. After preparing the RS4 nanoparticles, morphological, physical, chemical, and functional properties were assessed. Results revealed that RS4 nanoparticle size reached about 600nm. Scanning electron microscopy images showed that ultrasonication induced notches and grooves on the surface. Under polarized light, the polarized cross was impaired. X-ray diffraction results revealed that the crystalline structure was disrupted. Smaller or no endotherms were exhibited in DSC analysis. In the FTIR graph, new peaks at 1532.91 and 1451.50cm(-1) were observed, and pasting properties were reduced. Amylose content, solubility, and SP increased, but RS content decreased. Anti-digestibility remained after ultrasonication. The prepared RS4 nanoparticles could be extensively used in biomedical applications and in the development of new medical materials.
International Journal of Biological Macromolecules | 2018
Fusheng Zhang; ChunXia Ran; Jiong Zheng; Yongbo Ding; Guangjing Chen
Chimonobambusa quadrangularis polysaccharides (CPS) were extracted by ultrasonic-assisted extraction from bamboo shoots (C. quadrangularis) processing by-products. Three polysaccharide fractions, CPS70, CPS75 and CPS80, were obtained by precipitation at final ethanol concentrations of 70%, 75% and 80%, respectively. The physicochemical characterization and chemical antioxidant activities of the three polysaccharide fractions were compared on the basis of HPLC, FT-IR, XRD, TGA, and antioxidant measurements in vitro. The results suggested that ethanol concentrations used for precipitation of CPS can affect its physicochemical and associated functional properties, and antioxidant activities. Compared with CPS70 and CPS80, CPS75 had lower glucose content, higher total sugar content, and higher protein and uronic acid contents. The CPS70 and CPS80 were composed of Man, Rha, GlcA, Glc, Gal, Xyl and Ara, but none of them were found to contain GalA. In contrast, CPS75 consisted of Man, Rha, GlcA, GalA, Glc, Gal, Xyl and Ara. CPS75 had the lowest medium-high-molecular-weight value (116.53-118.18kDa) and the highest medium-low-molecular-weight value (21.30-22.68kDa). Meanwhile, CPS75 exhibited better functional properties including the repose angle, swelling capacity (SC), water retention capacity (WRC), and oil retention capacity (ORC). Moreover, CPS75 possessed higher scavenging capacities on DPPH, hydroxyl and ABTS radicals, higher oxygen radical absorbance capacity (OARC), higher metal chelating activity, and more significant reducing power. According to the results above, a final ethanol concentration of 75% could be chose to precipitate polysaccharides from bamboo shoots (C. quadrangularis) processing by-products. In summary, it is strongly recommended that the ethanol concentration employed in precipitation of natural polysaccharides could be optimized in advance.
Polymers | 2017
Fusheng Zhang; Min Liu; Fang Mo; Meixia Zhang; Jiong Zheng
To explore the functional properties of mixed biopolymer systems affected by acid and salts. The effects of acid and salt solutions (i.e., NaCl, KCl and CaCl2) on the pasting, rheology, texture and microstructure of lotus root starch–konjac glucomannan (LRS/KGM) mixtures were assessed. Acid (citric acid buffer) treatment worsened the pasting (except for breakdown viscosity), rheological (except for fluid index), and textural properties, thereby inhibiting retrogradation, weakening pseudoplasticity and thickening, and reducing mixture viscoelasticity. Furthermore, it led to destructive ruptures and large pores in the internal microstructure. Salt treatment worsened the pasting properties (except for setback viscosity), thus inhibiting retrogradation and weakening pseudoplasticity, but enhanced the rheological properties, improving thickening and fluctuating viscoelasticity of the mixture. Moreover, salt addition decreased the hardness while increasing mixture cohesiveness, and modified the elasticity, adhesiveness and internal microstructure in a salt type- and concentration-dependent manner. A salt solution concentration of 0.5 mol/L NaCl, 0.1 mol/L KCl, and 0.5 mol/L CaCl2 led to the mixture with the best texture and gel network.
Lwt - Food Science and Technology | 2016
Yongbo Ding; Jiong Zheng; Xuejuan Xia; Tingyuan Ren; Jianquan Kan