Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiping Liu is active.

Publication


Featured researches published by Jiping Liu.


Plant Journal | 2009

Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance.

Jiping Liu; Jurandir V. Magalhaes; Jon E. Shaff; Leon V. Kochian

Aluminum-activated root malate and citrate exudation play an important role in plant Al tolerance. This paper characterizes AtMATE, a homolog of the recently discovered sorghum and barley Al-tolerance genes, shown here to encode an Al-activated citrate transporter in Arabidopsis. Together with the previously characterized Al-activated malate transporter, AtALMT1, this discovery allowed us to examine the relationship in the same species between members of the two gene families for which Al-tolerance genes have been identified. AtMATE is expressed primarily in roots and is induced by Al. An AtMATE T-DNA knockdown line exhibited very low AtMATE expression and Al-activated root citrate exudation was abolished. The AtALMT1 AtMATE double mutant lacked both Al-activated root malate and citrate exudation and showed greater Al sensitivity than the AtALMT1 mutant. Therefore, although AtALMT1 is a major contributor to Arabidopsis Al tolerance, AtMATE also makes a significant but smaller contribution. The expression patterns of AtALMT1 and AtMATE and the profiles of Al-activated root citrate and malate exudation are not affected by the presence or absence of the other gene. These results suggest that AtALMT1-mediated malate exudation and AtMATE-mediated citrate exudation evolved independently to confer Al tolerance in Arabidopsis. However, a link between regulation of expression of the two transporters in response to Al was identified through work on STOP1, a transcription factor that was previously shown to be necessary for AtALMT1 expression. Here we show that STOP1 is also required for AtMATE expression and Al-activated citrate exudation.


Annual Review of Plant Biology | 2015

Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance

Leon V. Kochian; Miguel A. Piñeros; Jiping Liu; Jurandir V. Magalhaes

Aluminum (Al) toxicity in acid soils is a significant limitation to crop production worldwide, as approximately 50% of the worlds potentially arable soil is acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to Al toxicity has been a focus of intense research interest in the decade since the last article on crop acid soil tolerance was published in this journal. An impressive amount of progress has been made during that time that has greatly increased our understanding of the diversity of Al resistance genes and mechanisms, how resistance gene expression is regulated and triggered by Al and Al-induced signals, and how the proteins encoded by these genes function and are regulated. This review examines the state of our understanding of the physiological, genetic, and molecular bases for crop Al tolerance, looking at the novel Al resistance genes and mechanisms that have been identified over the past ten years. Additionally, it examines how the integration of molecular and genetic analyses of crop Al resistance is starting to be exploited for the improvement of crop plants grown on acid soils via both molecular-assisted breeding and biotechnology approaches.


PLOS ONE | 2011

The relationship between population structure and aluminum tolerance in cultivated sorghum.

Fernanda F. Caniato; Claudia Teixeira Guimarães; Martha T. Hamblin; Claire Billot; Jean-François Rami; B. Hufnagel; Leon V. Kochian; Jiping Liu; Antonion Augusto F. Garcia; C. Tom Hash; Punna Ramu; Sharon E. Mitchell; Stephen Kresovich; Antonio Carlos Baião de Oliveira; Gisela de Avellar; Aluízio Borém; Jean-Christophe Glaszmann; R. E. Schaffert; Jurandir V. Magalhaes

Background Acid soils comprise up to 50% of the worlds arable lands and in these areas aluminum (Al) toxicity impairs root growth, strongly limiting crop yield. Food security is thereby compromised in many developing countries located in tropical and subtropical regions worldwide. In sorghum, SbMATE, an Al-activated citrate transporter, underlies the AltSB locus on chromosome 3 and confers Al tolerance via Al-activated root citrate release. Methodology Population structure was studied in 254 sorghum accessions representative of the diversity present in cultivated sorghums. Al tolerance was assessed as the degree of root growth inhibition in nutrient solution containing Al. A genetic analysis based on markers flanking AltSB and SbMATE expression was undertaken to assess a possible role for AltSB in Al tolerant accessions. In addition, the mode of gene action was estimated concerning the Al tolerance trait. Comparisons between models that include population structure were applied to assess the importance of each subpopulation to Al tolerance. Conclusion/Significance Six subpopulations were revealed featuring specific racial and geographic origins. Al tolerance was found to be rather rare and present primarily in guinea and to lesser extent in caudatum subpopulations. AltSB was found to play a role in Al tolerance in most of the Al tolerant accessions. A striking variation was observed in the mode of gene action for the Al tolerance trait, which ranged from almost complete recessivity to near complete dominance, with a higher frequency of partially recessive sources of Al tolerance. A possible interpretation of our results concerning the origin and evolution of Al tolerance in cultivated sorghum is discussed. This study demonstrates the importance of deeply exploring the crop diversity reservoir both for a comprehensive view of the dynamics underlying the distribution and function of Al tolerance genes and to design efficient molecular breeding strategies aimed at enhancing Al tolerance.


Journal of Integrative Plant Biology | 2014

The role of aluminum sensing and signaling in plant aluminum resistance

Jiping Liu; Miguel A. Piñeros; Leon V. Kochian

As researchers have gained a better understanding in recent years into the physiological, molecular, and genetic basis of how plants deal with aluminum (Al) toxicity in acid soils prevalent in the tropics and sub-tropics, it has become clear that an important component of these responses is the triggering and regulation of cellular pathways and processes by Al. In this review of plant Al signaling, we begin by summarizing the understanding of physiological mechanisms of Al resistance, which first led researchers to realize that Al stress induces gene expression and modifies protein function during the activation of Al resistance responses. Subsequently, an overview of Al resistance genes and their function provides verification that Al induction of gene expression plays a major role in Al resistance in many plant species. More recent research into the mechanistic basis for Al-induced transcriptional activation of resistance genes has led to the identification of several transcription factors as well as cis-elements in the promoters of Al resistance genes that play a role in greater Al-induced gene expression as well as higher constitutive expression of resistance genes in some plant species. Finally, the post-transcriptional and translational regulation of Al resistance proteins is addressed, where recent research has shown that Al can both directly bind to and alter activity of certain organic acid transporters, and also influence Al resistance proteins indirectly, via protein phosphorylation.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance

Jian-Yong Li; Jiping Liu; Dekun Dong; Xiaomin Jia; Susan R. McCouch; Leon V. Kochian

Significance Acidic soils compose significant land areas in the tropics and subtropics. On acid soils, aluminum (Al) toxicity inhibits root growth, leading to reduced crop yields. Rice is the most Al-tolerant cereal crop. We examined the natural variation in rice Nramp aluminum transporter (OsNRAT1), which encodes a transporter mediating Al uptake from the root tip cell wall into the cell, where it is sequestered in the vacuole. We identified tolerant and sensitive NRAT1 alleles that exhibited lower NRAT1 expression and reduced Al uptake in the sensitive allele, resulting in a significant reduction in rice Al tolerance. These findings indicate that the NRAT1 transporter plays a major role in rice Al tolerance and open the door for using NRAT1 to improve Al tolerance in other cereal species. Aluminum (Al) toxicity is a major constraint for crop production on acid soils which compose ∼40% of arable land in the tropics and subtropics. Rice is the most Al-tolerant cereal crop and offers a good model for identifying Al tolerance genes and mechanisms. Here we investigated natural variation in the rice Nramp aluminum transporter (NRAT1) gene encoding a root plasma membrane Al uptake transporter previously hypothesized to underlie a unique Al tolerance mechanism. DNA sequence variation in the NRAT1 coding and regulatory regions was associated with changes in NRAT1 expression and NRAT1 Al transport properties. These sequence changes resulted in significant differences in Al tolerance that were found to be associated with changes in the Al content of root cell wall and cell sap in 24 representative rice lines from a rice association panel. Expression of the tolerant OsNRAT1 allele in yeast resulted in higher Al uptake than did the sensitive allele and conferred greater Al tolerance when expressed in transgenic Arabidopsis. These findings indicate that NRAT1 plays an important role in rice Al tolerance by reducing the level of toxic Al in the root cell wall and transporting Al into the root cell, where it is ultimately sequestered in the vacuole. Given its ability to enhance Al tolerance in rice and Arabidopsis, this work suggests that the NRAT1 gene or its orthologs may be useful tools for enhancing Al tolerance in a wide range of plant species.


Plant Journal | 2013

Targeted expression of SbMATE in the root distal transition zone is responsible for sorghum aluminum resistance

Mayandi Sivaguru; Jiping Liu; Leon V. Kochian

Aluminum (Al) toxicity is one of the major limiting factors for crop production on acid soils that comprise significant portions of the worlds lands. Aluminum resistance in the cereal crop Sorghum bicolor is mainly achieved by Al-activated root apical citrate exudation, which is mediated by the plasma membrane localized citrate efflux transporter encoded by SbMATE. Here we precisely localize tissue- and cell-specific Al toxicity responses as well as SbMATE gene and protein expression in root tips of an Al-resistant near-isogenic line (NIL). We found that Al induced the greatest cell damage and generation of reactive oxygen species specifically in the root distal transition zone (DTZ), a region 1-3 mm behind the root tip where transition from cell division to cell elongation occurs. These findings indicate that the root DTZ is the primary region of root Al stress. Furthermore, Al-induced SbMATE gene and protein expression were specifically localized to the epidermal and outer cortical cell layers of the DTZ in the Al-resistant NIL, and the process was precisely coincident with the time course of Al induction of SbMATE expression and the onset of the recovery of roots from Al-induced damage. These findings show that SbMATE gene and protein expression are induced when and where the root cells experience the greatest Al stress. Hence, Al-resistant sorghum plants have evolved an effective strategy to precisely localize root citrate exudation to the specific site of greatest Al-induced root damage, which minimizes plant carbon loss while maximizing protection of the root cells most susceptible to Al damage.


Plant Journal | 2012

A promoter-swap strategy between the AtALMT and AtMATE genes increased Arabidopsis aluminum resistance and improved carbon-use efficiency for aluminum resistance

Jiping Liu; Xiaoying Luo; Jon E. Shaff; Cuiyue Liang; Xiaomin Jia; Ziyan Li; Jurandir V. Magalhaes; Leon V. Kochian

The primary mechanism of Arabidopsis aluminum (Al) resistance is based on root Al exclusion, resulting from Al-activated root exudation of the Al(3+) -chelating organic acids, malate and citrate. Root malate exudation is the major contributor to Arabidopsis Al resistance, and is conferred by expression of AtALMT1, which encodes the root malate transporter. Root citrate exudation plays a smaller but still significant role in Arabidopsis Al resistance, and is conferred by expression of AtMATE, which encodes the root citrate transporter. In this study, we demonstrate that levels of Al-activated root organic acid exudation are closely correlated with expression of the organic acid transporter genes AtALMT1 and AtMATE. We also found that the AtALMT1 promoter confers a significantly higher level of gene expression than the AtMATE promoter. Analysis of AtALMT1 and AtMATE tissue- and cell-specific expression based on stable expression of promoter-reporter gene constructs showed that the two genes are expressed in complementary root regions: AtALMT1 is expressed in the root apices, while AtMATE is expressed in the mature portions of the roots. As citrate is a much more effective chelator of Al(3+) than malate, we used a promoter-swap strategy to test whether root tip-localized expression of the AtMATE coding region driven by the stronger AtALMT1 promoter (AtALMT1(P)::AtMATE) resulted in increased Arabidopsis Al resistance. Our results indicate that expression of AtALMT1(P)::AtMATE not only significantly increased Al resistance of the transgenic plants, but also enhanced carbon-use efficiency for Al resistance.


Plant Journal | 2013

Incomplete transfer of accessory loci influencing SbMATE expression underlies genetic background effects for aluminum tolerance in sorghum

Janaina O. Melo; Ubiraci Gomes de Paula Lana; Miguel A. Piñeros; Vera M.C. Alves; Claudia Teixeira Guimarães; Jiping Liu; Yi Zheng; Silin Zhong; Zhangjun Fei; Lyza G. Maron; R. E. Schaffert; Leon V. Kochian; Jurandir V. Magalhaes

Impaired root development caused by aluminum (Al) toxicity is a major cause of grain yield reduction in crops cultivated on acid soils, which are widespread worldwide. In sorghum, the major Al-tolerance locus, AltSB , is due to the function of SbMATE, which is an Al-activated root citrate transporter. Here we performed a molecular and physiological characterization of various AltSB donors and near-isogenic lines harboring various AltSB alleles. We observed a partial transfer of Al tolerance from the parents to the near-isogenic lines that was consistent across donor alleles, emphasizing the occurrence of strong genetic background effects related to AltSB . This reduction in tolerance was variable, with a 20% reduction being observed when highly Al-tolerant lines were the AltSB donors, and a reduction as great as 70% when other AltSB alleles were introgressed. This reduction in Al tolerance was closely correlated with a reduction in SbMATE expression in near-isogenic lines, suggesting incomplete transfer of loci acting in trans on SbMATE. Nevertheless, AltSB alleles from the highly Al-tolerant sources SC283 and SC566 were found to retain high SbMATE expression, presumably via elements present within or near the AltSB locus, resulting in significant transfer of the Al-tolerance phenotype to the derived near-isogenic lines. Allelic effects could not be explained by coding region polymorphisms, although occasional mutations may affect Al tolerance. Finally, we report on the extensive occurrence of alternative splicing for SbMATE, which may be an important component regulating SbMATE expression in sorghum by means of the nonsense-mediated RNA decay pathway.


Proceedings of the National Academy of Sciences of the United States of America | 2017

NIP1;2 is a plasma membrane-localized transporter mediating aluminum uptake, translocation, and tolerance in Arabidopsis

Yuqi Wang; Ruihong Li; Demou Li; Xiaomin Jia; Dangwei Zhou; Jianyong Li; Sangbom M. Lyi; Siyu Hou; Yulan Huang; Leon V. Kochian; Jiping Liu

Significance Aluminum (Al) toxicity is a major constraint for crops grown on acid soils. Various plant species have adopted an Al exclusion/avoidance mechanism and/or internal tolerance mechanisms to ameliorate Al toxicity. In Arabidopsis, the root organic acid exudation-based Al exclusion mechanism has been well characterized; however, no evidence for an internal Al tolerance mechanism has been reported. Here we identify NIP1;2 as an Al-malate transporter involved in Al removal from root cell walls and root-to-shoot Al translocation. We report that the NIP1;2-mediated Al-malate transport is dependent on Al-activated root malate efflux mediated by ALMT1 in Arabidopsis. Taken together, our findings demonstrate the importance of the coordination between Al exclusion and internal Al detoxification mechanisms in Al tolerance in Arabidopsis. Members of the aquaporin (AQP) family have been suggested to transport aluminum (Al) in plants; however, the Al form transported by AQPs and the roles of AQPs in Al tolerance remain elusive. Here we report that NIP1;2, a plasma membrane-localized member of the Arabidopsis nodulin 26-like intrinsic protein (NIP) subfamily of the AQP family, facilitates Al-malate transport from the root cell wall into the root symplasm, with subsequent Al xylem loading and root-to-shoot translocation, which are critical steps in an internal Al tolerance mechanism in Arabidopsis. We found that NIP1;2 transcripts are expressed mainly in the root tips, and that this expression is enhanced by Al but not by other metal stresses. Mutations in NIP1;2 lead to hyperaccumulation of toxic Al3+ in the root cell wall, inhibition of root-to-shoot Al translocation, and a significant reduction in Al tolerance. NIP1;2 facilitates the transport of Al-malate, but not Al3+ ions, in both yeast and Arabidopsis. We demonstrate that the formation of the Al-malate complex in the root tip apoplast is a prerequisite for NIP1;2-mediated Al removal from the root cell wall, and that this requires a functional root malate exudation system mediated by the Al-activated malate transporter, ALMT1. Taken together, these findings reveal a critical linkage between the previously identified Al exclusion mechanism based on root malate release and an internal Al tolerance mechanism identified here through the coordinated function of NIP1;2 and ALMT1, which is required for Al removal from the root cell wall, root-to-shoot Al translocation, and overall Al tolerance in Arabidopsis.


Frontiers in Plant Science | 2017

Quantitative iTRAQ Proteomics Revealed Possible Roles for Antioxidant Proteins in Sorghum Aluminum Tolerance

Dangwei Zhou; Yong Yang; Jinbiao Zhang; Fei Jiang; Eric Craft; Theodore W. Thannhauser; Leon V. Kochian; Jiping Liu

Aluminum (Al) toxicity inhibits root growth and limits crop yields on acid soils worldwide. However, quantitative information is scarce on protein expression profiles under Al stress in crops. In this study, we report on the identification of potential Al responsive proteins from root tips of Al sensitive BR007 and Al tolerant SC566 sorghum lines using a strategy employing iTRAQ and 2D-liquid chromatography (LC) coupled to MS/MS (2D-LC-MS/MS). A total of 771 and 329 unique proteins with abundance changes of >1.5 or <0.67-fold were identified in BR007 and SC566, respectively. Protein interaction and pathway analyses indicated that proteins involved in the antioxidant system were more abundant in the tolerant line than in the sensitive one after Al treatment, while opposite trends were observed for proteins involved in lignin biosynthesis. Higher levels of ROS accumulation in root tips of the sensitive line due to decreased activity of antioxidant enzymes could lead to higher lignin production and hyper-accumulation of toxic Al in cell walls. These results indicated that activities of peroxidases and the balance between production and consumption of ROS could be important for Al tolerance and lignin biosynthesis in sorghum.

Collaboration


Dive into the Jiping Liu's collaboration.

Top Co-Authors

Avatar

Leon V. Kochian

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jurandir V. Magalhaes

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. E. Schaffert

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Dangwei Zhou

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Fei Jiang

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Yuqi Wang

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Zhangjun Fei

Boyce Thompson Institute for Plant Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge