Jiqin Lian
Third Military Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiqin Lian.
BMC Cancer | 2009
Yao Dai; Meilan Liu; Wenhua Tang; Yongming Li; Jiqin Lian; Theodore S. Lawrence; Liang Xu
BackgroundAlthough tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for human cancer therapy, prostate cancer still remains resistant to TRAIL. Both X-linked inhibitor of apoptosis (XIAP) and nuclear factor-kappaB function as key negative regulators of TRAIL signaling. In this study, we evaluated the effect of SH122, a small molecule mimetic of the second mitochondria-derived activator of caspases (Smac), on TRAIL-induced apoptosis in prostate cancer cells.MethodsThe potential of Smac-mimetics to bind XIAP or cIAP-1 was examined by pull-down assay. Cytotoxicity of TRAIL and/or Smac-mimetics was determined by a standard cell growth assay. Silencing of XIAP or cIAP-1 was achieved by transient transfection of short hairpin RNA. Apoptosis was detected by Annexin V-PI staining followed by flow cytometry and by Western Blot analysis of caspases, PARP and Bid. NF-kappaB activation was determined by subcellular fractionation, real time RT-PCR and reporter assay.ResultsSH122, but not its inactive analog, binds to XIAP and cIAP-1. SH122 significantly sensitized prostate cancer cells to TRAIL-mediated cell death. Moreover, SH122 enhanced TRAIL-induced apoptosis via both the death receptor and the mitochondrial pathway. Knockdown of both XIAP and cIAP-1 sensitized cellular response to TRAIL. XIAP-knockdown attenuated sensitivity of SH122 to TRAIL-induced cytotoxicity, confirming that XIAP is an important target for IAP-inhibitor-mediated TRAIL sensitization. SH122 also suppressed TRAIL-induced NF-kappaB activation by preventing cytosolic IkappaB-alpha degradation and RelA nuclear translocation, as well as by suppressing NF-kappaB target gene expression.ConclusionThese results demonstrate that SH122 sensitizes human prostate cancer cells to TRAIL-induced apoptosis by mimicking Smac and blocking both IAPs and NF-kappaB. Modulating IAPs may represent a promising approach to overcoming TRAIL-resistance in human prostate cancer with constitutively active NF-kappaB signaling.
Cell Death and Disease | 2013
Panke Cheng; Zhenhong Ni; Xufang Dai; Bin Wang; Wen Ding; A Rae Smith; Liang Xu; Daocheng Wu; Fengtian He; Jiqin Lian
Apogossypolone (ApoG2), a novel derivative of gossypol, exhibits superior antitumor activity in Bcl-2 transgenic mice, and induces autophagy in several cancer cells. However, the detailed mechanisms are not well known. In the present study, we showed that ApoG2 induced autophagy through Beclin-1- and reactive oxygen species (ROS)-dependent manners in human hepatocellular carcinoma (HCC) cells. Incubating the HCC cell with ApoG2 abrogated the interaction of Beclin-1 and Bcl-2/xL, stimulated ROS generation, increased phosphorylation of ERK and JNK, and HMGB1 translocation from the nucleus to cytoplasm while suppressing mTOR. Moreover, inhibition of the ROS-mediated autophagy by antioxidant N-acetyl-cysteine (NAC) potentiates ApoG2-induced apoptosis and cell killing. Our results show that ApoG2 induced protective autophagy in HCC cells, partly due to ROS generation, suggesting that antioxidant may serve as a potential chemosensitizer to enhance cancer cell death through blocking ApoG2-stimulated autophagy. Our novel insights may facilitate the rational design of clinical trials for Bcl-2-targeted cancer therapy.
Free Radical Biology and Medicine | 2014
Zhenhong Ni; Bin Wang; Xufang Dai; Wen Ding; Ting Yang; Xinzhe Li; Seth J. Lewin; Liang Xu; Jiqin Lian; Fengtian He
The Bcl-2 inhibitor ABT-737 has shown promising antitumor efficacy in vivo and in vitro. However, some reports have demonstrated that HCC cells are resistant to ABT-737, and the corresponding molecular mechanisms of this resistance are not well known. In this study, we found that HCC cells with high levels of Bcl-2 were markedly resistant to ABT-737 compared to HCC cells with low levels of Bcl-2. In HCC cells with high levels of Bcl-2 (such as HepG2 cells), ABT-737 induced protective autophagy via the sequential triggering of reactive oxygen species (ROS) accumulation, short-term activation of JNK, enhanced phosphorylation of Bcl-2, and dissociation of Beclin 1 from the Bcl-2/Beclin 1 complex. Moreover, autophagy suppressed the overactivation of the ROS-JNK pathway and protected against apoptosis. In HCC cells with low levels of Bcl-2 (i.e., Huh7 cells), ABT-737 induced apoptosis via the sequential stimulation of ROS, sustained activation of JNK, enhanced translocation of Bax from the cytosol to the mitochondria, and release of cytochrome c. In sum, this study indicated that the activation of the ROS-JNK-autophagy pathway may be an important mechanism by which HCC cells with high levels of Bcl-2 are resistant to ABT-737.
Molecular Cancer Therapeutics | 2012
Jiqin Lian; Zhenhong Ni; Xufang Dai; Chang Su; Amber Smith; Liang Xu; Fengtian He
The natural BH3-mimetic (−)-gossypol shows promising efficacy in ongoing phase II/III clinical trials for human prostate cancer. Here, we show for the first time, that treatment with (−)-gossypol and multikinase inhibitor sorafenib synergistically suppresses the growth of androgen-independent prostate cancer cells (AI-PC) in vitro and in vivo. Our data suggest that sorafenib attenuates (−)-gossypol-induced Mcl-1 upregulation in AI-PCs. In this way, it serves as a potent chemosensitizer to affect cell death. Interestingly, (−)-gossypol and sorafenib induce cell death via two distinct pathways among different AI-PCs; DU145 cells via apoptosis and PC-3 via autophagy. The appointed death pathway may depend on the level of proapoptotic protein Bak, although the level of antiapoptotic protein Bcl-2 plays some role in it. DU145 cells with high Bak level prefer apoptosis induction, whereas PC-3 cells with low Bak prefer the induction of autophagy. Furthermore, inhibiting nondominant death pathways, that is, autophagy in DU145 and apoptosis in PC-3, enhances cell killing by (−)-gossypol/sorafenib combination therapy. Ultimately, our data expose a new action for sorafenib as an enhancer of (−)-gossypol-induced cell growth suppression and reveal a novel cell death mode by Bak activation manners in AI-PCs. These new insights may facilitate the rational design of clinical trials by selecting patients most likely to benefit from the Bcl-2–targeted molecular therapy. Mol Cancer Ther; 11(2); 416–26. ©2011 AACR.
Bioorganic & Medicinal Chemistry | 2010
Xiaoqing Wu; Mingdong Li; Yang Qu; Wenhua Tang; Youguang Zheng; Jiqin Lian; Min Ji; Liang Xu
There is an urgent need to design and develop new and more potent EGFR inhibitors with improved anti-tumor activity. Here we describe the design and synthesis of two series of 4-benzothienyl amino quinazolines as new analogues of the EGFR inhibitor Gefitinib. The anti-tumor activity of these novel Gefitinib analogues in 6 human cancer cell lines was examined. Compared with the parental Gefitinib, most of the new compounds show a markedly increased cytotoxicity to cancer cells. Furthermore, several of the series B compounds that side chains at position 7 contain either a methyl or ethyl group are potent pan-RTK inhibitors. Two representative compounds in this class, 15 and 17, have an enhanced capability to inhibit cancer cell growth and induce apoptosis in vitro and inhibit tumor formation in vivo in human cancer cells with high HER-2, as compared with the parental Gefitinib. Thus they may be promising lead compounds to be developed as an alternative for current Gefitinib therapy or for Gefitinb-resistant patients, potentially via simultaneously blocking multiple RTK signaling pathways.
Molecular Cancer | 2014
Bin Wang; Zhenhong Ni; Xufang Dai; Liyan Qin; Xinzhe Li; Liang Xu; Jiqin Lian; Fengtian He
BackgroundHepatocellular carcinoma (HCC) is one of the major causes of mortality. ABT-263 is a newly synthesized, orally available Bcl-2/xL inhibitor that shows promising efficacy in HCC therapy. ABT-263 inhibits the anti-apoptotic activity of Bcl-2 and Bcl-xL, but not Mcl-1. Previous reports have shown that ABT-263 upregulates Mcl-1 in various cancer cells, which contributes to ABT-263 resistance in cancer therapy. However, the associated mechanisms are not well known.MethodsWestern blot, RNAi and CCK-8 assays were used to investigate the relationship between Mcl-1 upregulation and ABT-263 sensitivity in HCC cells. Real-time PCR and Western blot were used to detect Mcl-1 mRNA and protein levels. Luciferase reporter assay and RNA synthesis inhibition assay were adopted to analyze the mechanism of Mcl-1 mRNA upregulation. Western blot and the inhibition assays for protein synthesis and proteasome were used to explore the mechanisms of ABT-263-enhanced Mcl-1 protein stability. Trypan blue exclusion assay and flow cytometry were used to examine cell death and apoptosis.ResultsABT-263 upregulated Mcl-1 mRNA and protein levels in HCC cells, which contributes to ABT-263 resistance. ABT-263 increased the mRNA level of Mcl-1 in HCC cells by enhancing the mRNA stability without influencing its transcription. Furthermore, ABT-263 increased the protein stability of Mcl-1 through promoting ERK- and JNK-induced phosphorylation of Mcl-1Thr163 and increasing the Akt-mediated inactivation of GSK-3β. Additionally, the inhibitors of ERK, JNK or Akt sensitized ABT-263-induced apoptosis in HCC cells.ConclusionsABT-263 increases Mcl-1 stability at both mRNA and protein levels in HCC cells. Inhibition of ERK, JNK or Akt activity sensitizes ABT-263-induced apoptosis. This study may provide novel insights into the Bcl-2-targeted cancer therapeutics.
Leukemia & Lymphoma | 2013
Zhenhong Ni; Xufang Dai; Bin Wang; Wen Ding; Panke Cheng; Liang Xu; Jiqin Lian; Fengtian He
Abstract (−)– Gossypol, a natural inhibitor of anti-apoptotic Bcl-2 proteins, has presented an effective anti-tumor activity in numerous preclinical trials. More and more evidence in vivo and in vitro validates that (−)– gossypol can dramatically suppress cell proliferation and induce cell death in hematological malignancies. However, the detailed mechanisms are not well known. In the present study, we showed that treatment with (−)– gossypol stimulated reactive oxygen species (ROS) generation and induced autophagy in Burkitt lymphoma cells. Antioxidant N-acetyl-cysteine (NAC) pretreatment attenuated (−)– gossypol-induced autophagy. Furthermore, (−)– gossypol treatment increased the translocation of high mobility group box 1 (HMGB1) from nuclei to cytoplasm, which can be suppressed by NAC pretreatment. NAC pretreatment also dramatically enhanced (−)– gossypol-induced apoptosis and total cell death. These results indicate that (−)– gossypol induces a protective autophagy in Burkitt lymphoma cells, partly due to ROS induction and cytosolic translocation of HMGB1. Antioxidants may serve as potent chemosensitizers to enhance cell death through blocking (−)– gossypol-induced autophagy.
Oncotarget | 2016
Xiaoqing Wu; Wenhua Tang; Rebecca T. Marquez; Ke Li; Chad Highfill; Fengtian He; Jiqin Lian; Jiayuh Lin; James R. Fuchs; Min Ji; Ling Li; Liang Xu
Chemo/radio-therapy resistance to the deadly pancreatic cancer is mainly due to the failure to kill pancreatic cancer stem cells (CSCs). Signal transducer and activator of transcription 3 (STAT3) is activated in pancreatic CSCs and, therefore, may be a valid target for overcoming therapeutic resistance. Here we investigated the potential of STAT3 inhibition in sensitizing pancreatic cancer to chemo/radio-therapy. We found that the levels of nuclear pSTAT3 in pancreatic cancer correlated with advanced tumor grade and poor patient outcome. Liposomal delivery of a STAT3 inhibitor FLLL32 (Lip-FLLL32) inhibited STAT3 phosphorylation and STAT3 target genes in pancreatic cancer cells and tumors. Consequently, Lip-FLLL32 suppressed pancreatic cancer cell growth, and exhibited synergetic effects with gemcitabine and radiation treatment in vitro and in vivo. Furthermore, Lip-FLLL32 reduced ALDH1-positive CSC population and modulated several potential stem cell markers. These results demonstrate that Lip-FLLL32 suppresses pancreatic tumor growth and sensitizes pancreatic cancer cells to radiotherapy through inhibition of CSCs in a STAT3-dependent manner. By targeting pancreatic CSCs, Lip-FLLL32 provides a novel strategy for pancreatic cancer therapy via overcoming radioresistance.
Autophagy | 2015
Zhenhong Ni; Yi Gong; Xufang Dai; Wen Ding; Bin Wang; Haiyan Gong; Liyan Qin; Panke Cheng; Song Li; Jiqin Lian; Fengtian He
ATG4 plays a key role in autophagy induction, but the methods for monitoring ATG4 activity in living cells are limited. Here we designed a novel fluorescent peptide named AU4S for noninvasive detection of ATG4 activity in living cells, which consists of the cell-penetrating peptide (CPP), ATG4-recognized sequence “GTFG,” and the fluorophore FITC. Additionally, an ATG4-resistant peptide AG4R was used as a control. CPP can help AU4S or AG4R to penetrate cell membrane efficiently. AU4S but not AG4R can be recognized and cleaved by ATG4, leading to the change of fluorescence intensity. Therefore, the difference between AU4S- and AG4R-measured fluorescence values in the same sample, defined as “F-D value,” can reflect ATG4 activity. By detecting the F-D values, we found that ATG4 activity paralleled LC3B-II levels in rapamycin-treated cells, but neither paralleled LC3B-II levels in starved cells nor presented a correlation with LC3B-II accumulation in WBCs from healthy donors or leukemia patients. However, when DTT was added to the system, ATG4 activity not only paralleled LC3B-II levels in starved cells in the presence or absence of autophagy inhibitors, but also presented a positive correlation with LC3B-II accumulation in WBCs from leukemia patients (R2 = 0.5288). In conclusion, this study provides a convenient, rapid, and quantitative method to monitor ATG4 activity in living cells, which may be beneficial to basic and clinical research on autophagy.
Experimental Cell Research | 2014
Bin Wang; Linfeng Chen; Zhenhong Ni; Xufang Dai; Liyan Qin; Yaran Wu; Xinzhe Li; Liang Xu; Jiqin Lian; Fengtian He
Natural BH3-memitic (-)-gossypol shows promising antitumor efficacy in several kinds of cancer. However, our previous studies have demonstrated that protective autophagy decreases the drug sensitivities of Bcl-2 inhibitors in hepatocellular carcinoma (HCC) cells. In the present study, we are the first to report that Hsp90 inhibitor 17-AAG enhanced (-)-gossypol-induced apoptosis via suppressing (-)-gossypol-triggered protective autophagy and Mcl-1 accumulation. The suppression effect of 17-AAG on autophagy was mediated by inhibiting ERK-mediated Bcl-2 phosphorylation while was not related to Beclin1 or LC3 protein instability. Meanwhile, 17-AAG downregulated (-)-gossypol-triggered Mcl-1 accumulation by suppressing Mcl-1(Thr163) phosphorylation and promoting protein degradation. Collectively, our study indicates that Hsp90 plays an important role in tumor maintenance and inhibition of Hsp90 may become a new strategy for sensitizing Bcl-2-targeted chemotherapies in HCC cells.