Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiqing Sai is active.

Publication


Featured researches published by Jiqing Sai.


PLOS ONE | 2010

Monomeric and Dimeric CXCL8 Are Both Essential for In Vivo Neutrophil Recruitment

Sandhya Thulasi Das; Lavanya Rajagopalan; Antonieta Guerrero-Plata; Jiqing Sai; Ann Richmond; Roberto P. Garofalo; Krishna Rajarathnam

Rapid mobilization of neutrophils from vasculature to the site of bacterial/viral infections and tissue injury is a critical step in successful resolution of inflammation. The chemokine CXCL8 plays a central role in recruiting neutrophils. A characteristic feature of CXCL8 is its ability to reversibly exist as both monomers and dimers, but whether both forms exist in vivo, and if so, the relevance of each form for in vivo function is not known. In this study, using a ‘trapped’ non-associating monomer and a non-dissociating dimer, we show that (i) wild type (WT) CXCL8 exists as both monomers and dimers, (ii) the in vivo recruitment profiles of the monomer, dimer, and WT are distinctly different, and (iii) the dimer is essential for initial robust recruitment and the WT is most active for sustained recruitment. Using a microfluidic device, we also observe that recruitment is not only dependent on the total amount of CXCL8 but also on the steepness of the gradient, and the gradients created by different CXCL8 variants elicit different neutrophil migratory responses. CXCL8 mediates its function by binding to CXCR2 receptor on neutrophils and glycosaminoglycans (GAGs) on endothelial cells. On the basis of our data, we propose that dynamic equilibrium between CXCL8 monomers and dimers and their differential binding to CXCR2 and GAGs mediates and regulates in vivo neutrophil recruitment. Our finding that both CXCL8 monomer and dimer are functional in vivo is novel, and indicates that the CXCL8 monomer-dimer equilibrium and neutrophil recruitment are intimately linked in health and disease.


Journal of Biological Chemistry | 2008

Parallel Phosphatidylinositol 3-Kinase (PI3K)-dependent and Src-dependent Pathways Lead to CXCL8-mediated Rac2 Activation and Chemotaxis

Jiqing Sai; Dayanidhi Raman; Yuxin Liu; John P. Wikswo; Ann Richmond

The requirement for phosphatidylinositol 3-kinase (PI3K) in the establishment of cell polarity and motility in a number of cell types has recently come into question. In this study, we demonstrate that inhibition of PI3K by wortmannin in neutrophil-like differentiated HL60 cells expressing CXCR2 resulted in reduced cell motility but normal chemotaxis in response to a gradient of CXCL8. However, wortmannin inhibition of PI3K did impair the ability of cells to re-orient their polarity and respond quickly to a change in the direction of the CXCL8 gradient. We hypothesized that Src-regulated ELMO-Dock2-Rac2 activation mediates chemotaxis in the absence of PI3K activity. Inhibition of Src with the small molecule inhibitor, PP2, or inhibition of Dock2 by shRNA knockdown confirmed the functional role of Src and Dock2 in regulating chemotaxis when PI3K was inhibited. Moreover, neutrophils isolated from bone marrow of hck-/-fgr-/-lyn-/- mice exhibited much more severe inhibition of chemotaxis when PI3K was blocked with wortmannin as compared with neutrophils isolated from bone marrow of wild-type mice. Thus, PI3K and Src-ELMO-Dock2 pathways work in parallel to activate Rac2 and modulate chemotaxis in response to a CXCL8 gradient in neutrophils.


Journal of Cell Science | 2009

VASP is a CXCR2-interacting protein that regulates CXCR2-mediated polarization and chemotaxis

Nicole F. Neel; Melanie Barzik; Dayanidhi Raman; Tammy Sobolik-Delmaire; Jiqing Sai; Amy J. Ham; Raymond L. Mernaugh; Frank B. Gertler; Ann Richmond

Chemotaxis regulates the recruitment of leukocytes, which is integral for a number of biological processes and is mediated through the interaction of chemokines with seven transmembrane G-protein-coupled receptors. Several studies have indicated that chemotactic signaling pathways might be activated via G-protein-independent mechanisms, perhaps through novel receptor-interacting proteins. CXCR2 is a major chemokine receptor expressed on neutrophils. We used a proteomics approach to identify unique ligand-dependent CXCR2-interacting proteins in differentiated neutrophil-like HL-60 cells. Using this approach, vasodilator-stimulated phosphoprotein (VASP) was identified as a CXCR2-interacting protein. The interaction between CXCR2 and VASP is direct and enhanced by CXCL8 stimulation, which triggers VASP phosphorylation via PKA- and PKCδ-mediated pathways. The interaction between CXCR2 and VASP requires free F-actin barbed ends to recruit VASP to the leading edge. Finally, knockdown of VASP in HL-60 cells results in severely impaired CXCR2-mediated chemotaxis and polarization. These data provide the first demonstration that direct interaction of VASP with CXCR2 is essential for proper CXCR2 function and demonstrate a crucial role for VASP in mediating chemotaxis in leukocytes.


Journal of Biological Chemistry | 2006

The IL sequence in the LLKIL motif in CXCR2 is required for full ligand induced activation of ERK, AKT and chemotaxis in HL60 cells

Jiqing Sai; Glenn M. Walker; John P. Wikswo; Ann Richmond

The chemotaxis of differentiated HL60 cells stably expressing CXCR2 was examined in a microfluidic gradient device where the steepness of the CXCL8 chemokine gradient was varied from 2 pg/ml/μm (0-1 ng/ml over a width of 500 μm) to 50 pg/ml/μm (0-25 ng/ml over 500 μm). The differentiated HL60 cells stably expressing CXCR2 exhibited little chemotaxis in response to a 0-1 ng/ml gradient, but displayed an increasing chemotactic response as the gradient steepness increased from 0 to 5, 0 to 10, and 0 to 25 ng/ml, demonstrating that steepness of gradient is a major determinant of the relative ability of cells to persistently migrate up a chemotactic gradient. When HL60 cells expressed CXCR2 mutated in the C terminus LLKIL motif (IL to AA), ligand-induced internalization of receptors was reduced 50%, whereas cell migration along the gradient of CXCL8 was completely lost. Although both mutant and wild-type receptors could mediate Akt and Erk activation in response to CXCL8, the level of activation of these two kinases was much lower in the cell line expressing the mutant receptors. These data imply that the IL amino acid residues in the LLKIL motif are very important for activation of the signal transduction cascade, which is necessary for cells to sense the chemokine gradient and respond with chemotaxis. Moreover, because mutation of the IL residues in the LLKIL motif resulted in only 50% reduction in receptor internalization, and a 50% reduction in Akt and Erk phosphorylation, but a complete loss of chemotactic response, the data imply that IL amino acid residues in the LLKIL motif are key either for amplification or oscillation of crucial signaling events or for establishment of a threshold for signals required for chemotaxis.


PLOS ONE | 2010

LIM and SH3 Protein -1 Modulates CXCR2-Mediated Cell Migration

Dayanidhi Raman; Jiqing Sai; Nicole F. Neel; Catherine S. Chew; Ann Richmond

Background The chemokine receptor CXCR2 plays a pivotal role in migration of neutrophils, macrophages and endothelial cells, modulating several biological responses such as angiogenesis, wound healing and acute inflammation. CXCR2 is also involved in pathogenesis of chronic inflammation, sepsis and atherosclerosis. The ability of CXCR2 to associate with a variety of proteins dynamically is responsible for its effects on directed cell migration or chemotaxis. The dynamic network of such CXCR2 binding proteins is termed as “CXCR2 chemosynapse”. Proteomic analysis of proteins that co-immunoprecipitated with CXCR2 in neutrophil-like dHL-60 cells revealed a novel protein, LIM and SH3 protein 1 (LASP-1), binds CXCR2 under both basal and ligand activated conditions. LASP-1 is an actin binding cytoskeletal protein, involved in the cell migration. Methodology/Principal Findings We demonstrate that CXCR2 and LASP-1 co-immunoprecipitate and co-localize at the leading edge of migrating cells. The LIM domain of LASP-1 directly binds to the carboxy-terminal domain (CTD) of CXCR2. Moreover, LASP-1 also directly binds the CTD of CXCR1, CXCR3 and CXCR4. Using a site-directed and deletion mutagenesis approach, Iso323-Leu324 of the conserved LKIL motif on CXCR2-CTD was identified as the binding site for LASP-1. Interruption of the interaction between CXCR2-CTD and LIM domain of LASP-1 by dominant negative and knock down approaches inhibited CXCR2-mediated chemotaxis. Analysis for the mechanism for inhibition of CXCR2-mediated chemotaxis indicated that LASP-1/CXCR2 interaction is essential for cell motility and focal adhesion turnover involving activation of Src, paxillin, PAK1, p130CAS and ERK1/2. Conclusions/Significance We demonstrate here for the first time that LASP-1 is a key component of the “CXCR2 chemosynapse” and LASP-1 interaction with CXCR2 is critical for CXCR2-mediated chemotaxis. Furthermore, LASP-1 also directly binds the CTD of CXCR1, CXCR3 and CXCR4, suggesting that LASP-1 is a general mediator of CXC chemokine mediated chemotaxis. Thus, LASP-1 may serve as a new link coordinating the flow of information between chemokine receptors and nascent focal adhesions, especially at the leading edge. Thus the association between the chemokine receptors and LASP-1 suggests to the presence of a CXC chemokine receptor-LASP-1 pro-migratory module in cells governing the cell migration.


Biomedical Microdevices | 2008

Microfluidic switching system for analyzing chemotaxis responses of wortmannin-inhibited HL-60 cells

Yuxin Liu; Jiqing Sai; Ann Richmond; John P. Wikswo

The chemotaxis of phosphoinositide kinase-3 (PI3K)-inhibited differentiated HL-60 cells stably expressing CXCR2 was studied in a microfluidic switching gradient device that can generate stable and well-defined forward and reverse gradients. Wortmannin, a widely used PI3K inhibitor, was added during cell preparation and the experiment process. The studies quantify the chemotaxis gradient and the effects of a change in the direction of a CXCL-8 gradient on cell migration. PI3K-inhibited HL-60 cells migrated more efficiently toward the gradient before gradient switching than after, as measured by the effective chemotactic index. The inhibited HL-60 cells also showed that inadequate polarization, slower response time, and reduced cell populations can follow the gradient change. We observed that the role of PI3K in directing cellular response to gradient reversal was important in cell polarization and directional sensing associated with gradient switching.


PLOS ONE | 2011

IQGAP1 Is a Novel CXCR2-Interacting Protein and Essential Component of the ''Chemosynapse''

Nicole F. Neel; Jiqing Sai; Amy-Joan L. Ham; Tammy Sobolik-Delmaire; Raymond L. Mernaugh; Ann Richmond

Background Chemotaxis is essential for a number of physiological processes including leukocyte recruitment. Chemokines initiate intracellular signaling pathways necessary for chemotaxis through binding seven transmembrane G protein-couple receptors. Little is known about the proteins that interact with the intracellular domains of chemokine receptors to initiate cellular signaling upon ligand binding. CXCR2 is a major chemokine receptor expressed on several cell types, including endothelial cells and neutrophils. We hypothesize that multiple proteins interact with the intracellular domains of CXCR2 upon ligand stimulation and these interactions comprise a “chemosynapse”, and play important roles in transducing CXCR2 mediated signaling processes. Methodology/Principal Findings In an effort to define the complex of proteins that assemble upon CXCR2 activation to relay signals from activated chemokine receptors, a proteomics approach was employed to identify proteins that co-associate with CXCR2 with or without ligand stimulation. The components of the CXCR2 “chemosynapse” are involved in processes ranging from intracellular trafficking to cytoskeletal modification. IQ motif containing GTPase activating protein 1 (IQGAP1) was among the novel proteins identified to interact directly with CXCR2. Herein, we demonstrate that CXCR2 co-localizes with IQGAP1 at the leading edge of polarized human neutrophils and CXCR2 expressing differentiated HL-60 cells. Moreover, amino acids 1-160 of IQGAP1 directly interact with the carboxyl-terminal domain of CXCR2 and stimulation with CXCL8 enhances IQGAP1 association with Cdc42. Conclusions Our studies indicate that IQGAP1 is a novel essential component of the CXCR2 “chemosynapse”.


Cancer Research | 2012

Ikk4a/Arf Inactivation with Activation of the NF-κB/IL-6 Pathway Is Sufficient to Drive the Development and Growth of Angiosarcoma

Jinming Yang; Sara M. Kantrow; Jiqing Sai; Oriana E. Hawkins; Mark Boothby; Gregory D. Ayers; Eric D. Young; Elizabeth G. Demicco; Alexander J. Lazar; Dina Lev; Ann Richmond

Although human angiosarcoma has been associated frequently with mutational inactivation of the tumor suppressor gene Ink4a/Arf, the underlying mechanisms have not been delineated. Here we report that malignant angiosarcoma is associated with high levels of RelA/NF-κB and IL-6 in contrast to normal vessels or benign hemagiomas. Studies of Ink4a/Arf deficient mice not only recapitulate genetic traits observed in human angiosarcoma, but also unveil a possible therapeutic link comprised of the NF-kB/IL-6/Stat3 signaling axis. In Ink4a/Arf(-/-) cells, NF-κB controlled Stat3 signaling by transcriptionally controlling the expression of IL-6, gp130, and Jak2. Further, IL-6 mediated Stat3 signaling through the sIL-6R. Inhibition of Ikkβ solely in myeloid cells was insufficient to block angiosarcoma development; in contrast, systemic inhibition of Ikkβ, IL-6, or Stat3 markedly inhibited angiosarcoma growth. Our findings offer clinical implications for targeting the NF-kB/IL-6/STAT3 pathway as a rational strategy to treat angiosarcoma.


Journal of Cell Science | 2004

The C-terminal domain LLKIL motif of CXCR2 is required for ligand-mediated polarization of early signals during chemotaxis

Jiqing Sai; Guo-Huang Fan; Dingzhi Wang; Ann Richmond

HEK293 cells expressing wild-type CXCR2 recruit PH-Akt-GFP to the leading edge of the cell in response to chemokine. However, in cells expressing mutant CXCR2 defective in AP-2 and HIP binding, i.e. with a mutation in the LLKIL motif, PH-Akt-GFP does not localize to the leading edge in response to ligand. Inhibition of Akt/PKB by transfection of HEK 293 cells with a dominant negative (kinase defective) Akt/PKB inhibits CXCR2 mediated chemotaxis. FRET analysis reveals that membrane-bound activated Cdc42 and Rac1 localize to the leading edge of cells expressing wild-type CXCR2 receptor, but not in cells expressing mutant CXCR2. By contrast, when the activation of Cdc42 and Rac1 are monitored by affinity precipitation assay, cells expressing either wild-type or LLKIL mutant receptors show equivalent ligand induction. Altogether, these data suggest that restricted localized activation of Akt/PKB, Rac1 and Cdc42 is crucial for chemotactic responses and that events mediated by the LLKIL motif are crucial for chemotaxis.


Traffic | 2014

Adaptor protein2 (AP2) orchestrates CXCR2-mediated cell migration.

Dayanidhi Raman; Jiqing Sai; Oriana E. Hawkins; Ann Richmond

The chemokine receptor CXCR2 is vital for inflammation, wound healing, angiogenesis, cancer progression and metastasis. Adaptor protein 2 (AP2), a clathrin binding heterotetrameric protein comprised of α, β2, μ2 and σ2 subunits, facilitates clathrin‐mediated endocytosis. Mutation of the LLKIL motif in the CXCR2 carboxyl‐terminal domain (CTD) results in loss of AP2 binding to the receptor and loss of ligand‐mediated receptor internalization and chemotaxis. AP2 knockdown also results in diminished ligand‐mediated CXCR2 internalization, polarization and chemotaxis. Using knockdown/rescue approaches with AP2‐μ2 mutants, the binding domains were characterized in reference to CXCR2 internalization and chemotaxis. When in an open conformation, μ2 Patch 1 and Patch 2 domains bind tightly to membrane PIP2 phospholipids. When AP2‐μ2, is replaced with μ2 mutated in Patch 1 and/or Patch 2 domains, ligand‐mediated receptor binding and internalization are not lost. However, chemotaxis requires AP2‐μ2 Patch 1, but not Patch 2. AP2‐σ2 has been demonstrated to bind dileucine motifs to facilitate internalization. Expression of AP2‐σ2 V88D and V98S dominant negative mutants resulted in loss of CXCR2 mediated chemotaxis. Thus, AP2 binding to both membrane phosphatidylinositol phospholipids and dileucine motifs is crucial for directional migration or chemotaxis. Moreover, AP2‐mediated receptor internalization can be dissociated from AP2‐mediated chemotaxis.

Collaboration


Dive into the Jiqing Sai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinming Yang

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole Lavender

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge