Jiri Hejnar
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiri Hejnar.
PLOS Pathogens | 2009
Jana Blazkova; Katerina Trejbalova; Françoise Gondois-Rey; Philippe Halfon; Patrick Philibert; Allan Guiguen; Eric Verdin; Daniel Olive; Carine Van Lint; Jiri Hejnar; Ivan Hirsch
DNA methylation of retroviral promoters and enhancers localized in the provirus 5′ long terminal repeat (LTR) is considered to be a mechanism of transcriptional suppression that allows retroviruses to evade host immune responses and antiretroviral drugs. However, the role of DNA methylation in the control of HIV-1 latency has never been unambiguously demonstrated, in contrast to the apparent importance of transcriptional interference and chromatin structure, and has never been studied in HIV-1-infected patients. Here, we show in an in vitro model of reactivable latency and in a latent reservoir of HIV-1-infected patients that CpG methylation of the HIV-1 5′ LTR is an additional epigenetic restriction mechanism, which controls resistance of latent HIV-1 to reactivation signals and thus determines the stability of the HIV-1 latency. CpG methylation acts as a late event during establishment of HIV-1 latency and is not required for the initial provirus silencing. Indeed, the latent reservoir of some aviremic patients contained high proportions of the non-methylated 5′ LTR. The latency controlled solely by transcriptional interference and by chromatin-dependent mechanisms in the absence of significant promoter DNA methylation tends to be leaky and easily reactivable. In the latent reservoir of HIV-1-infected individuals without detectable plasma viremia, we found HIV-1 promoters and enhancers to be hypermethylated and resistant to reactivation, as opposed to the hypomethylated 5′ LTR in viremic patients. However, even dense methylation of the HIV-1 5′LTR did not confer complete resistance to reactivation of latent HIV-1 with some histone deacetylase inhibitors, protein kinase C agonists, TNF-α, and their combinations with 5-aza-2deoxycytidine: the densely methylated HIV-1 promoter was most efficiently reactivated in virtual absence of T cell activation by suberoylanilide hydroxamic acid. Tight but incomplete control of HIV-1 latency by CpG methylation might have important implications for strategies aimed at eradicating HIV-1 infection.
Journal of Immunology | 2013
Linda Scobie; Vered Padler-Karavani; Stéphanie Le Bas-Bernardet; Claire Crossan; Josef Blaha; Magda Matouskova; Ralph D. Hector; Emanuele Cozzi; Bernard Vanhove; Béatrice Charreau; Gilles Blancho; Ludovic Bourdais; Mariachiara Tallacchini; Juan M. Ribes; Hai Yu; Xi Chen; Jitka Kracikova; Ludomir Broz; Jiri Hejnar; Pavel Vesely; Yasuhiro Takeuchi; Ajit Varki; Jean Paul Soulillou
Acellular materials of xenogenic origin are used worldwide as xenografts, and phase I trials of viable pig pancreatic islets are currently being performed. However, limited information is available on transmission of porcine endogenous retrovirus (PERV) after xenotransplantation and on the long-term immune response of recipients to xenoantigens. We analyzed the blood of burn patients who had received living pig-skin dressings for up to 8 wk for the presence of PERV as well as for the level and nature of their long term (maximum, 34 y) immune response against pig Ags. Although no evidence of PERV genomic material or anti-PERV Ab response was found, we observed a moderate increase in anti-αGal Abs and a high and sustained anti–non-αGal IgG response in those patients. Abs against the nonhuman sialic acid Neu5Gc constituted the anti–non-αGal response with the recognition pattern on a sialoglycan array differing from that of burn patients treated without pig skin. These data suggest that anti-Neu5Gc Abs represent a barrier for long-term acceptance of porcine xenografts. Because anti-Neu5Gc Abs can promote chronic inflammation, the long-term safety of living and acellular pig tissue implants in recipients warrants further evaluation.
Immunology | 2007
Jasper Manning; Marie Indrová; Barbora Lubyova; Hana Pribylova; Jana Bieblová; Jiri Hejnar; Símová J; Jandlová T; Bubeník J; Milan Reiniš
Epigenetic events play an important role in tumour progression and also contribute to escape of the tumour from immune surveillance. In this study, we investigated the up‐regulation of major histocompatibility complex (MHC) class I surface expression on tumour cells by epigenetic mechanisms using a murine tumour cell line expressing human E6 and E7 human papilloma virus 16 (HPV16) oncogenes and deficient in MHC class I expression, as a result of impaired antigen‐presenting machinery (APM). Treatment of the cells with the histone deacetylase inhibitor Trichostatin A, either alone or in combination with the DNA demethylating agent 5‐azacytidine, induced surface re‐expression of MHC class I molecules. Consequently, the treated cells became susceptible to lysis by specific cytotoxic T lymphocytes. Further analysis revealed that epigenetic induction of MHC class I surface expression was associated with the up‐regulation of APM genes [transporter associated with antigen processing 1 (TAP‐1), TAP‐2, low‐molecular‐mass protein 2 (LMP‐2) and LMP‐7]. The results demonstrate that expression of the genes involved in APM are modulated by epigenetic mechanisms and suggest that agents modifying DNA methylation and/or histone acetylation have the potential to change the effectiveness of antitumour immune responses and therapeutically may have an impact on immunological output.
Biology of Reproduction | 2006
Pavel Trefil; Alena Mičáková; Jitka Mucksová; Jiri Hejnar; Martin Poplstein; Murray R. Bakst; Jiří Kalina; Jean Pierre Brillard
Abstract Transplantation of male germ cells into sterilized recipients has been widely used in mammals for conventional breeding and transgenesis purposes. This study presents a workable approach for germ cell transplantation between male chickens. Testicular cells from adult and prepubertal donors were dispersed and transplanted by injection directly into the testes of recipient males sterilized by repeated gamma irradiation. We describe the repopulation of the recipient seminiferous epithelium up to the production of heterologous sperm in about 50% of transplanted males. In comparison to males transplanted with testicular cell preparations from adult donors, in which the first ejaculates with sperm were recovered about 5 wk after transfer, a substantial interval (about 10 wk) was necessary to obtain ejaculates after the transfer of testicular cells from prepubertal donors. However, in both cases, recipient males produced ejaculates capable of fertilizing ova and producing progeny expressing donor genes.
Journal of Virology | 2003
Marjorie Pion; Albert Jordan; Angélique Biancotto; Franck Dequiedt; Françoise Gondois-Rey; Sophie Rondeau; Robert Vigne; Jiri Hejnar; Eric Verdin; Ivan Hirsch
ABSTRACT Persistence of human immunodeficiency virus type 1 (HIV-1) constitutes a major obstacle in the control of HIV-1 infection. Here we investigated whether the CpG methylation of the HIV-1 promoter can directly influence the expression of the HIV-1 genome and thereby contribute to the persistence and latency of HIV-1. The levels of CpG methylation in the promoter of HIV-1 were studied after bisulfite-induced modification of DNA in five Jurkat clonal cell lines transduced by an HIV-1 long terminal repeat (LTR)-driven retroviral vector and expressing enhanced green fluorescent protein (GFP) and in primary resting memory T cells challenged with HIV-1 or with an HIV-1-derived retroviral vector. Basal HIV-1 promoter activities were low or undetectable in three tested HIV-1 LTR-GFP clones, one of which encoded the Tat protein, and they reached medium or high levels in two other clones. The CpG dinucleotide that occurred in a latently infected clonal cell line 240 nucleotides upstream of the transcription start remained methylated after reactivation of HIV-1 transcription with 10 nM phorbol-12-myristate-13-acetate. In two clones showing a medium promoter activity and in resting memory T cells, the HIV-1 LTR was generally not methylated. Our results show that the methylation profiles of the HIV-1 LTR, including those present in latently infected cells, are low and do not correlate with the transcriptional activity. We suggest that, in a noncloned cellular population in which the HIV-1 proviruses are randomly integrated in the human genome, HIV-1 latency is imperfectly controlled by CpG methylation and is inherently accompanied by residual replication.
Reproduction | 2007
Jiří Kalina; Filip Šenigl; Alena Mičáková; Jitka Mucksová; Jana Blazkova; Haifeng Yan; Martin Poplstein; Jiri Hejnar; Pavel Trefil
Chicken testicular cells, including spermatogonia, transplanted into the testes of recipient cockerels sterilized by repeated gamma-irradiation repopulate the seminiferous epithelium and resume the exogenous spermatogenesis. This procedure could be used to introduce genetic modifications into the male germ line and generate transgenic chickens. In this study, we present a successful retroviral infection of chicken testicular cells and consequent transduction of the retroviral vector into the sperm of recipient cockerels. A vesicular stomatitis virus glycoprotein G-pseudotyped recombinant retroviral vector, carrying the enhanced green fluorescent protein reporter gene was applied to the short-term culture of dispersed testicular cells. The efficiency of infection and the viability of infected cells were analyzed by flow cytometry. No significant CpG methylation was detected in the infected testicular cells, suggesting that epigenetic silencing events do not play a role at this stage of germ line development. After transplantation into sterilized recipient cockerels, these retrovirus-infected testicular cells restored exogenous spermatogenesis within 9 weeks with approximately the same efficiency as non-infected cells. Transduction of the reporter gene encoding the green fluorescent protein was detected in the sperms of recipient cockerels with restored spermatogenesis. Our data demonstrate that, similarly as in mouse and rat, the transplantation of retrovirus-infected spermatogonia provides an efficient system to introduce genes into the chicken male germ line.
Retrovirology | 2010
Jana Blazkova; Katerina Trejbalova; Françoise Gondois-Rey; Halfon Philippe; Philibert Patrick; Eric Verdin; Daniel Olive; Carine Van Lint; Jiri Hejnar; Ivan Hirsch
Background DNA methylation of retroviral promoter and enhancer localized in the provirus 5’ long terminal repeat (LTR) is considered to be a mechanism of transcriptional suppression that allows retroviruses to evade host immune responses and antiretroviral drugs. However, the role of DNA methylation in the control of HIV-1 latency has never been unambiguously demonstrated, in contrast to the apparent importance of transcriptional interference and chromatin structure, and has never been studied in HIV-1-infected patients.
PLOS Neglected Tropical Diseases | 2011
Antonio R. L. Teixeira; Clever Gomes; Nadjar Nitz; Alessandro Sousa; Rozeneide M. Alves; Maria C. Guimaro; Ciro Cordeiro; Francisco Ernesto Moreno Bernal; Ana de Cássia Rosa; Jiri Hejnar; Eduardo Leonardecz; Mariana M. Hecht
Background The administration of anti-trypanosome nitroderivatives curtails Trypanosoma cruzi infection in Chagas disease patients, but does not prevent destructive lesions in the heart. This observation suggests that an effective treatment for the disease requires understanding its pathogenesis. Methodology/Principal Findings To understand the origin of clinical manifestations of the heart disease we used a chicken model system in which infection can be initiated in the egg, but parasite persistence is precluded. T. cruzi inoculation into the air chamber of embryonated chicken eggs generated chicks that retained only the parasite mitochondrial kinetoplast DNA minicircle in their genome after eight days of gestation. Crossbreeding showed that minicircles were transferred vertically via the germ line to chicken progeny. Minicircle integration in coding regions was shown by targeted-primer thermal asymmetric interlaced PCR, and detected by direct genomic analysis. The kDNA-mutated chickens died with arrhythmias, shortness of breath, cyanosis and heart failure. These chickens with cardiomyopathy had rupture of the dystrophin and other genes that regulate cell growth and differentiation. Tissue pathology revealed inflammatory dilated cardiomegaly whereby immune system mononuclear cells lyse parasite-free target heart fibers. The heart cell destruction implicated a thymus-dependent, autoimmune; self-tissue rejection carried out by CD45+, CD8γδ+, and CD8α lymphocytes. Conclusions/Significance These results suggest that genetic alterations resulting from kDNA integration in the host genome lead to autoimmune-mediated destruction of heart tissue in the absence of T. cruzi parasites.
Journal of Virology | 2008
Markéta Reinišová; Filip Šenigl; Xueqian Yin; Jirri Plachy; Josef Geryk; Daniel Elleder; Jan Svoboda; Mark J. Federspiel; Jiri Hejnar
ABSTRACT The avian sarcoma and leukosis virus (ASLV) family of retroviruses contains five highly related envelope subgroups (A to E) thought to have evolved from a common viral ancestor in the chicken population. Three genetic loci in chickens determine the susceptibility or resistance of cells to infection by the subgroup A to E ASLVs. Some inbred lines of chickens display phenotypes that are somewhere in between either efficiently susceptible or resistant to infection by specific subgroups of ASLV. The tvb gene encodes the receptor for subgroups B, D, and E ASLVs. The wild-type TvbS1 receptor confers susceptibility to subgroups B, D, and E ASLVs. In this study, the genetic defect that accounts for the altered susceptibility of an inbred chicken line, line M, to infection by ASLV(B), ASLV(D), and ASLV(E) was identified. The tvb gene in line M, tvbr2, encodes a mutant TvbS1 receptor protein with a substitution of a serine for a cysteine at position 125 (C125S). Here, we show that the C125S substitution in TvbS1 significantly reduces the susceptibility of line M cells to infection by ASLV(B) and ASLV(D) and virtually eliminates susceptibility to ASLV(E) infection both in cultured cells and in the incidence and growth of avian sarcoma virus-induced sarcomas in chickens. The C125S substitution significantly reduces the binding affinity of the TvbS1 receptor for the subgroup B, D, and E ASLV envelope glycoproteins. These are the first results that demonstrate a possible role of the cysteine-rich domain 3 in the function of the Tvb receptors.
PLOS ONE | 2016
Besma Aouar; Denisa Kovarova; Sébastien Letard; Albert Font-Haro; Jonathan Florentin; Jan Weber; David Durantel; Laurence Chaperot; Joel Plumas; Katerina Trejbalova; Jiri Hejnar; Jacques A. Nunès; Daniel Olive; Patrice Dubreuil; Ivan Hirsch; Ruzena Wiersum Stranska
Crosslinking of regulatory immunoreceptors (RR), such as BDCA-2 (CD303) or ILT7 (CD85g), of plasmacytoid dendritic cells (pDCs) efficiently suppresses production of type-I interferon (IFN)-α/β and other cytokines in response to Toll-like receptor (TLR) 7/9 ligands. This cytokine-inhibitory pathway is mediated by spleen tyrosine kinase (Syk) associated with the ITAM-containing adapter of RR. Here we demonstrate by pharmacological targeting of Syk that in addition to the negative regulation of TLR7/9 signaling via RR, Syk also positively regulates the TLR7/9 pathway in human pDCs. Novel highly specific Syk inhibitor AB8779 suppressed IFN-α, TNF-α and IL-6 production induced by TLR7/9 agonists in primary pDCs and in the pDC cell line GEN2.2. Triggering of TLR9 or RR signaling induced a differential kinetics of phosphorylation at Y352 and Y525/526 of Syk and a differential sensitivity to AB8779. Consistent with the different roles of Syk in TLR7/9 and RR signaling, a concentration of AB8779 insufficient to block TLR7/9 signaling still released the block of IFN-α production triggered via the RR pathway, including that induced by hepatitis B and C viruses. Thus, pharmacological targeting of Syk partially restored the main pDC function—IFN-α production. Opposing roles of Syk in TLR7/9 and RR pathways may regulate the innate immune response to weaken inflammation reaction.