Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiri Kovarik is active.

Publication


Featured researches published by Jiri Kovarik.


Journal of Pharmacology and Experimental Therapeutics | 2009

The Potent Protein Kinase C-Selective Inhibitor AEB071 (Sotrastaurin) Represents a New Class of Immunosuppressive Agents Affecting Early T-Cell Activation

Jean-Pierre Evenou; Jürgen Wagner; Gerhard Zenke; Volker Brinkmann; Kathrin Wagner; Jiri Kovarik; Karl Welzenbach; Gabriele Weitz-Schmidt; Christine Guntermann; Harry Towbin; Sylvain Cottens; Sandra Kaminski; Thomas Letschka; Christina Lutz-Nicoladoni; Thomas Gruber; Natascha Hermann-Kleiter; Nikolaus Thuille; Gottfried Baier

There is a pressing need for immunosuppressants with an improved safety profile. The search for novel approaches to blocking T-cell activation led to the development of the selective protein kinase C (PKC) inhibitor AEB071 (sotrastaurin). In cell-free kinase assays AEB071 inhibited PKC, with Ki values in the subnanomolar to low nanomolar range. Upon T-cell stimulation, AEB071 markedly inhibited in situ PKCθ catalytic activity and selectively affected both the canonical nuclear factor-κB and nuclear factor of activated T cells (but not activator protein-1) transactivation pathways. In primary human and mouse T cells, AEB071 treatment effectively abrogated at low nanomolar concentration markers of early T-cell activation, such as interleukin-2 secretion and CD25 expression. Accordingly, the CD3/CD28 antibody- and alloantigen-induced T-cell proliferation responses were potently inhibited by AEB071 in the absence of nonspecific antiproliferative effects. Unlike former PKC inhibitors, AEB071 did not enhance apoptosis of murine T-cell blasts in a model of activation-induced cell death. Furthermore, AEB071 markedly inhibited lymphocyte function-associated antigen-1-mediated T-cell adhesion at nanomolar concentrations. The mode of action of AEB071 is different from that of calcineurin inhibitors, and AEB071 and cyclosporine A seem to have complementary effects on T-cell signaling pathways.


Journal of Medicinal Chemistry | 2008

Orally Bioavailable Isothioureas Block Function of the Chemokine Receptor CXCR4 In Vitro and In Vivo

Gebhard Thoma; Markus Streiff; Jiri Kovarik; Fraser Glickman; Trixie Wagner; Christian Beerli; Hans-Günter Zerwes

The interaction of the chemokine receptor CXCR4 with its ligand CXCL12 is involved in many biological processes such as hematopoesis, migration of immune cells, as well as in cancer metastasis. CXCR4 also mediates the infection of T-cells with X4-tropic HIV functioning as a coreceptor for the viral envelope protein gp120. Here, we describe highly potent, selective CXCR4 inhibitors that block CXCR4/CXCL12 interactions in vitro and in vivo as well as the infection of target cells by X4-tropic HIV.


Journal of Immunology | 2011

Targeting the CXCR4–CXCL12 Axis Mobilizes Autologous Hematopoietic Stem Cells and Prolongs Islet Allograft Survival via Programmed Death Ligand 1

Paolo Fiorina; Mollie Jurewicz; Andrea Vergani; Alessandra Petrelli; Michele Carvello; Francesca D’Addio; Jonathan G. Godwin; Kenneth Law; Erxi Wu; Ze Tian; Gebhard Thoma; Jiri Kovarik; Stefano La Rosa; Carlo Capella; Scott J. Rodig; Hans-Guenter Zerwes; Mohamed H. Sayegh; Reza Abdi

Antagonism of CXCR4 disrupts the interaction between the CXCR4 receptor on hematopoietic stem cells (HSCs) and the CXCL12 expressed by stromal cells in the bone marrow, which subsequently results in the shedding of HSCs to the periphery. Because of their profound immunomodulatory effects, HSCs have emerged as a promising therapeutic strategy for autoimmune disorders. We sought to investigate the immunomodulatory role of mobilized autologous HSCs, via target of the CXCR4-CXL12 axis, to promote engraftment of islet cell transplantation. Islets from BALB/c mice were transplanted beneath the kidney capsule of hyperglycemic C57BL/6 mice, and treatment of recipients with CXCR4 antagonist resulted in mobilization of HSCs and in prolongation of islet graft survival. Addition of rapamycin to anti-CXCR4 therapy further promoted HSC mobilization and islet allograft survival, inducing a robust and transferable host hyporesponsiveness, while administration of an ACK2 (anti-CD117) mAb halted CXCR4 antagonist-mediated HSC release and restored allograft rejection. Mobilized HSCs were shown to express high levels of the negative costimulatory molecule programmed death ligand 1 (PD-L1), and HSCs extracted from wild-type mice, but not from PD-L1 knockout mice, suppressed the in vitro alloimmune response. Moreover, HSC mobilization in PD-L1 knockout mice failed to prolong islet allograft survival. Targeting the CXCR4–CXCL12 axis thus mobilizes autologous HSCs and promotes long-term survival of islet allografts via a PD-L1–mediated mechanism.


Blood | 2015

Therapeutic activity of multiple common γ-chain cytokine inhibition in acute and chronic GVHD.

Anne Kathrin Hechinger; Benjamin A.H. Smith; Ryan Flynn; Kathrin Hanke; Cameron McDonald-Hyman; Patricia A. Taylor; Dietmar Pfeifer; Björn Hackanson; Franziska Leonhardt; Gabriele Prinz; Heide Dierbach; Annette Schmitt-Graeff; Jiri Kovarik; Bruce R. Blazar; Robert Zeiser

The common γ chain (CD132) is a subunit of the interleukin (IL) receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Because levels of several of these cytokines were shown to be increased in the serum of patients developing acute and chronic graft-versus-host disease (GVHD), we reasoned that inhibition of CD132 could have a profound effect on GVHD. We observed that anti-CD132 monoclonal antibody (mAb) reduced acute GVHD potently with respect to survival, production of tumor necrosis factor, interferon-γ, and IL-6, and GVHD histopathology. Anti-CD132 mAb afforded protection from GVHD partly via inhibition of granzyme B production in CD8 T cells, whereas exposure of CD8 T cells to IL-2, IL-7, IL-15, and IL-21 increased granzyme B production. Also, T cells exposed to anti-CD132 mAb displayed a more naive phenotype in microarray-based analyses and showed reduced Janus kinase 3 (JAK3) phosphorylation upon activation. Consistent with a role of JAK3 in GVHD, Jak3(-/-) T cells caused less severe GVHD. Additionally, anti-CD132 mAb treatment of established chronic GVHD reversed liver and lung fibrosis, and pulmonary dysfunction characteristic of bronchiolitis obliterans. We conclude that acute GVHD and chronic GVHD, caused by T cells activated by common γ-chain cytokines, each represent therapeutic targets for anti-CD132 mAb immunomodulation.


Arthritis & Rheumatism | 2009

The critical role of kinase activity of interleukin‐1 receptor–associated kinase 4 in animal models of joint inflammation

Magdalena Koziczak-Holbro; Amanda Littlewood-Evans; Bernadette Pöllinger; Jiri Kovarik; Janet Dawson; Gerhard Zenke; Christoph Burkhart; Matthias Müller; Hermann Gram

OBJECTIVE We have previously reported that the kinase activity of interleukin-1 receptor-associated kinase 4 (IRAK-4) is important for Toll-like receptor and interleukin-1 receptor signaling in vitro. Using mice devoid of IRAK-4 kinase activity (IRAK-4 KD mice), we undertook this study to determine the importance of IRAK-4 kinase function in complex disease models of joint inflammation. METHODS IRAK-4 KD mice were subjected to serum transfer-induced (K/BxN) arthritis, and migration of transferred spleen lymphocytes into joints and cartilage and bone degradation were assessed. T cell response in vivo was tested in antigen-induced arthritis (AIA) by measuring the T cell-dependent antigen-specific IgG production and frequency of antigen-specific T cells in the spleen and lymph nodes. T cell allogeneic response was tested in vitro by mixed lymphocyte reaction (MLR). RESULTS Lipopolysaccharide-induced local neutrophil influx into subcutaneous air pouches was impaired in IRAK-4 KD mice. These mice were also protected from inflammation in the K/BxN and AIA models, as shown by reduced swelling of joints. Histologic analysis of joints of K/BxN serum-injected mice revealed that bone erosion, osteoclast formation, and cartilage matrix proteoglycan loss were reduced in IRAK-4 KD mice. Assessment of T cell response by MLR, by frequency of antigen-specific clones, and by production of antigen-specific IgG did not reveal substantial differences between IRAK-4 KD and wild-type mice. CONCLUSION These results demonstrate that IRAK-4 is a key component for the development of proarthritis inflammation, but that it is not crucial for T cell activation. Therefore, the kinase function of IRAK-4 appears to be an attractive therapeutic target in chronic inflammation.


Science Translational Medicine | 2016

Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2

Natalia Arenas-Ramirez; Chao Zou; Simone Popp; Daniel Zingg; Barbara Brannetti; Emmanuelle Wirth; Thomas Calzascia; Jiri Kovarik; Lukas Sommer; Gerhard Zenke; Janine Woytschak; Catherine H. Regnier; Andreas Katopodis; Onur Boyman

An antibody to human IL-2 phenocopies CD25 and improves IL-2–based cancer immunotherapy. Running interference Interleukin-2 (IL-2) binds to receptors on multiple different types of T cells. CD8 T cells, which can kill tumor cells, have IL-2 receptors with two subunits. When IL-2 binds to these, it promotes the T cells’ activation. In contrast, regulatory T cells dampen the antitumor immune response, and they express a different type of IL-2 receptor, which contains CD25 in addition to the other two subunits. CD25 binds IL-2 tightly but does not signal. To address this, Arenas-Ramirez et al. developed an anti–IL-2 antibody that can block CD25, such that delivering the antibody together with IL-2 allows IL-2 to bind specifically to the two-subunit IL-2 receptors and promote an antitumor immune response without interference from regulatory T cells. Interleukin-2 (IL-2) immunotherapy is an attractive approach in treating advanced cancer. However, by binding to its IL-2 receptor α (CD25) subunit, IL-2 exerts unwanted effects, including stimulation of immunosuppressive regulatory T cells (Tregs) and contribution to vascular leak syndrome. We used a rational approach to develop a monoclonal antibody to human IL-2, termed NARA1, which acts as a high-affinity CD25 mimic, thereby minimizing association of IL-2 with CD25. The structure of the IL-2–NARA1 complex revealed that NARA1 occupies the CD25 epitope of IL-2 and precisely overlaps with CD25. Association of NARA1 with IL-2 occurs with 10-fold higher affinity compared to CD25 and forms IL-2/NARA1 complexes, which, in vivo, preferentially stimulate CD8+ T cells while disfavoring CD25+ Tregs and improving the benefit–to–adverse effect ratio of IL-2. In two transplantable and one spontaneous metastatic melanoma model, IL-2/NARA1 complex immunotherapy resulted in efficient expansion of tumor-specific and polyclonal CD8+ T cells. These CD8+ T cells showed robust interferon-γ production and expressed low levels of exhaustion markers programmed cell death protein-1, lymphocyte activation gene-3, and T cell immunoglobulin and mucin domain-3. These effects resulted in potent anticancer immune responses and prolonged survival in the tumor models. Collectively, our data demonstrate that NARA1 acts as a CD25-mimobody that confers selectivity and increased potency to IL-2 and warrant further assessment of NARA1 as a therapeutic.


Immunology and Cell Biology | 2018

The T-cell fingerprint of MALT1 paracaspase revealed by selective inhibition

Maureen Bardet; Adeline Unterreiner; Claire Malinverni; Frédérique Lafossas; Corinne Vedrine; Danielle Boesch; Yeter Kolb; Daniel Kaiser; Anton Glück; Martin A. Schneider; Andreas Katopodis; Martin Renatus; Oliver Simic; Achim Schlapbach; Jean Quancard; Catherine H. Regnier; Guido Bold; Carole Pissot-Soldermann; José M. Carballido; Jiri Kovarik; Thomas Calzascia; Frédéric Bornancin

Mucosa‐associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is essential for immune responses triggered by antigen receptors but the contribution of its paracaspase activity is not fully understood. Here, we studied how MALT1 proteolytic function regulates T‐cell activation and fate after engagement of the T‐cell receptor pathway. We show that MLT‐827, a potent and selective MALT1 paracaspase inhibitor, does not prevent the initial phase of T‐cell activation, in contrast to the pan‐protein kinase C inhibitor AEB071. However, MLT‐827 strongly impacted cell expansion after activation. We demonstrate this is the consequence of profound inhibition of IL‐2 production as well as reduced expression of the IL‐2 receptor alpha subunit (CD25), resulting from defective canonical NF‐κB activation and accelerated mRNA turnover mechanisms. Accordingly, MLT‐827 revealed a unique transcriptional fingerprint of MALT1 protease activity, providing evidence for broad control of T‐cell signaling pathways. Altogether, this first report with a potent and selective inhibitor elucidates how MALT1 paracaspase activity integrates several T‐cell activation pathways and indirectly controls gamma‐chain receptor dependent survival, to impact on T‐cell expansion.


Bioorganic & Medicinal Chemistry Letters | 2011

Special ergolines efficiently inhibit the chemokine receptor CXCR3 in blood

Gebhard Thoma; Rolf Baenteli; Ian Lewis; Darryl Brynley Jones; Jiri Kovarik; Markus Streiff; Hans-Guenter Zerwes

The structure-activity relationship of highly potent special ergolines which selectively block the chemokine receptor CXCR3 is reported. The most potent compounds showed IC(50) values below 10nM in both ligand binding and Ca(2+)-mobilization assays. However, these compounds were poorly active in an assay that measures receptor occupancy in blood. Introduction of polar substituents led to derivatives with IC(50) values below 10nM in this assay. Among them was compound 11a which showed both a favorable PK profile and cross reactivity with rodent CXCR3 making it a promising tool compound to further explore the role of CXCR3 in animal models.


Immunology Letters | 2018

DPP9 enzymatic activity in hematopoietic cells is dispensable for mouse hematopoiesis

Munkyung Kim; Lilly von Muenchow; Thomas Le Meur; Benjamin Kueng; Berangere Gapp; Delphine Weber; William F. Dietrich; Jiri Kovarik; Antonius Rolink; Iwona Ksiazek

Dipeptidyl peptidase 9 (DPP9) is a ubiquitously expressed intracellular prolyl peptidase implicated in immunoregulation. However, its physiological relevance in the immune system remains largely unknown. We investigated the role of DPP9 enzyme in immune system by characterizing DPP9 knock-in mice expressing a catalytically inactive S729A mutant of DPP9 enzyme (DPP9ki/ki mice). DPP9ki/ki mice show reduced number of lymphoid and myeloid cells in fetal liver and postnatal blood but their hematopoietic cells are fully functional and able to reconstitute lymphoid and myeloid lineages even in competitive mixed chimeras. These studies demonstrate that inactivation of DPP9 enzymatic activity does not lead to any perturbations in mouse hematopoiesis.


Archive | 2006

Cxcr4 Binding Molecules

Jiri Kovarik; Gebhard Thoma; Beat Weidmann; Timothy Wright; Hans-Günter Zerwes

Collaboration


Dive into the Jiri Kovarik's collaboration.

Researchain Logo
Decentralizing Knowledge