Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiří Nováček is active.

Publication


Featured researches published by Jiří Nováček.


Journal of Biomolecular NMR | 2010

Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments.

Veronika Motáčková; Jiří Nováček; Anna Zawadzka-Kazimierczuk; Krzysztof Kazimierczuk; Lukáš Žídek; Hana Šanderová; Libor Krásný; Wiktor Koźmiński; Vladimír Sklenář

A strategy for complete backbone and side-chain resonance assignment of disordered proteins with highly repetitive sequence is presented. The protocol is based on three resolution-enhanced NMR experiments: 5D HN(CA)CONH provides sequential connectivity, 5D HabCabCONH is utilized to identify amino acid types, and 5D HC(CC-TOCSY)CONH is used to assign the side-chain resonances. The improved resolution was achieved by a combination of high dimensionality and long evolution times, allowed by non-uniform sampling in the indirect dimensions. Random distribution of the data points and Sparse Multidimensional Fourier Transform processing were used. Successful application of the assignment procedure to a particularly difficult protein, δ subunit of RNA polymerase from Bacillus subtilis, is shown to prove the efficiency of the strategy. The studied protein contains a disordered C-terminal region of 81 amino acids with a highly repetitive sequence. While the conventional assignment methods completely failed due to a very small differences in chemical shifts, the presented strategy provided a complete backbone and side-chain assignment.


Journal of Magnetic Resonance | 2014

Toward optimal-resolution NMR of intrinsically disordered proteins

Jiří Nováček; Lukáš Žídek; Vladimír Sklenář

Proteins, which, in their native conditions, sample a multitude of distinct conformational states characterized by high spatiotemporal heterogeneity, most often termed as intrinsically disordered proteins (IDPs), have become a target of broad interest over the past 15years. With the growing evidence of their important roles in fundamental cellular processes, there is an urgent need to characterize the conformational behavior of IDPs at the highest possible level. The unique feature of NMR spectroscopy in the context of IDPs is its ability to supply details of their structural and temporal alterations at atomic-level resolution. Here, we briefly review recently proposed NMR-based strategies to characterize transient states populated by IDPs and summarize the latest achievements and future prospects in methodological development. Because low chemical shift dispersion represents the major obstacle encountered when studying IDPs by nuclear magnetic resonance, particular attention is paid to techniques allowing one to approach the physical limits of attainable resolution.


Proteins | 2010

Solution structure of the N-terminal domain of Bacillus subtilis delta subunit of RNA polymerase and its classification based on structural homologs.

Veronika Motáčková; Hana Šanderová; Lukáš Žídek; Jiří Nováček; Petr Padrta; Alžběta Švenková; Jana Korelusová; Jiří Jonák; Libor Krásný; Vladimír Sklenář

RNA polymerase is an essential multisubunit enzyme responsible for transcription of genetic information from DNA into RNA. The RNA polymerase from Bacillus subtilis differs from its analogue from gram-negative bacteria in a presence of two additional subunits, omega1 and delta. Their role in the transcription machinery is still not clear. In this study, we focused on the N-terminal part of delta subunit to reveal its structure. The sample was prepared using a standard protocol of overexpression in the E.coli system to produce a 15N,13C-uniformly labeled sample. A standard set of spectra was measured on a 600MHz spectrometer. The distance restrains were extracted and assigned from NOESY spectra. The additional RDC restraints and anisotropic contributions to the 13C chemical shifts were used in the final refinement. The quality of the calculated structures were checked. The determined structure was identified based on structure homology with some proteins from the Forkhead DNA-binding domain SCOP family.


PLOS ONE | 2015

Conformational Dynamics and Antigenicity in the Disordered Malaria Antigen Merozoite Surface Protein 2

Christopher A. MacRaild; Milan Zachrdla; Dean W. Andrew; Bankala Krishnarjuna; Jiří Nováček; Lukáš Žídek; Vladimír Sklenář; Jack S. Richards; James G. Beeson; Robin F. Anders; Raymond S. Norton

Merozoite surface protein 2 (MSP2) of Plasmodium falciparum is an abundant, intrinsically disordered protein that is GPI-anchored to the surface of the invasive blood stage of the malaria parasite. Recombinant MSP2 has been trialled as a component of a malaria vaccine, and is one of several disordered proteins that are candidates for inclusion in vaccines for malaria and other diseases. Nonetheless, little is known about the implications of protein disorder for the development of an effective antibody response. We have therefore undertaken a detailed analysis of the conformational dynamics of the two allelic forms of MSP2 (3D7 and FC27) using NMR spectroscopy. Chemical shifts and NMR relaxation data indicate that conformational and dynamic properties of the N- and C-terminal conserved regions in the two forms of MSP2 are essentially identical, but significant variation exists between and within the central variable regions. We observe a strong relationship between the conformational dynamics and the antigenicity of MSP2, as assessed with antisera to recombinant MSP2. Regions of increased conformational order in MSP2, including those in the conserved regions, are more strongly antigenic, while the most flexible regions are minimally antigenic. This suggests that modifications that increase conformational order may offer a means to tune the antigenicity of MSP2 and other disordered antigens, with implications for vaccine design.


Nucleic Acids Research | 2016

Cryo-EM structure of the spinach chloroplast ribosome reveals the location of plastid-specific ribosomal proteins and extensions

Michael Graf; Stefan Arenz; Paul Huter; Alexandra Dönhöfer; Jiří Nováček; Daniel N. Wilson

Abstract Ribosomes are the protein synthesizing machines of the cell. Recent advances in cryo-EM have led to the determination of structures from a variety of species, including bacterial 70S and eukaryotic 80S ribosomes as well as mitoribosomes from eukaryotic mitochondria, however, to date high resolution structures of plastid 70S ribosomes have been lacking. Here we present a cryo-EM structure of the spinach chloroplast 70S ribosome, with an average resolution of 5.4 Å for the small 30S subunit and 3.6 Å for the large 50S ribosomal subunit. The structure reveals the location of the plastid-specific ribosomal proteins (RPs) PSRP1, PSRP4, PSRP5 and PSRP6 as well as the numerous plastid-specific extensions of the RPs. We discover many features by which the plastid-specific extensions stabilize the ribosome via establishing additional interactions with surrounding ribosomal RNA and RPs. Moreover, we identify a large conglomerate of plastid-specific protein mass adjacent to the tunnel exit site that could facilitate interaction of the chloroplast ribosome with the thylakoid membrane and the protein-targeting machinery. Comparing the Escherichia coli 70S ribosome with that of the spinach chloroplast ribosome provides detailed insight into the co-evolution of RP and rRNA.


Molecular Cell | 2017

Structural Basis for Polyproline-Mediated Ribosome Stalling and Rescue by the Translation Elongation Factor EF-P

Paul Huter; Stefan Arenz; Lars V. Bock; Michael Graf; Jan Ole Frister; André Heuer; Lauri Peil; Agata L. Starosta; Ingo Wohlgemuth; Frank Peske; Jiří Nováček; Otto Berninghausen; Helmut Grubmüller; Tanel Tenson; Roland Beckmann; Marina V. Rodnina; Andrea C. Vaiana; Daniel N. Wilson

Ribosomes synthesizing proteins containing consecutive proline residues become stalled and require rescue via the action of uniquely modified translation elongation factors, EF-P in bacteria, or archaeal/eukaryotic a/eIF5A. To date, no structures exist of EF-P or eIF5A in complex with translating ribosomes stalled at polyproline stretches, and thus structural insight into how EF-P/eIF5A rescue these arrested ribosomes has been lacking. Here we present cryo-EM structures of ribosomes stalled on proline stretches, without and with modified EF-P. The structures suggest that the favored conformation of the polyproline-containing nascent chain is incompatible with the peptide exit tunnel of the ribosome and leads to destabilization of the peptidyl-tRNA. Binding of EF-P stabilizes the P-site tRNA, particularly via interactions between its modification and the CCA end, thereby enforcing an alternative conformation of the polyproline-containing nascent chain, which allows a favorable substrate geometry for peptide bond formation.


ChemBioChem | 2013

Structural study of the partially disordered full-length δ subunit of RNA polymerase from Bacillus subtilis.

Veronika Papoušková; Pavel Kadeřávek; Olga Otrusinová; Alžbeta Rabatinová; Hana Šanderová; Jiří Nováček; Libor Krásný; Vladimír Sklenář; Lukáš Žídek

The partially disordered δ subunit of RNA polymerase was studied by various NMR techniques. The structure of the well‐folded N‐terminal domain was determined based on inter‐proton distances in NOESY spectra. The obtained structural model was compared to the previously determined structure of a truncated construct (lacking the C‐terminal domain). Only marginal differences were identified, thus indicating that the first structural model was not significantly compromised by the absence of the C‐terminal domain. Various 15N relaxation experiments were employed to describe the flexibility of both domains. The relaxation data revealed that the C‐terminal domain is more flexible, but its flexibility is not uniform. By using paramagnetic labels, transient contacts of the C‐terminal tail with the N‐terminal domain and with itself were identified. A propensity of the C‐terminal domain to form β‐type structures was obtained by chemical shift analysis. Comparison with the paramagnetic relaxation enhancement indicated a well‐balanced interplay of repulsive and attractive electrostatic interactions governing the conformational behavior of the C‐terminal domain. The results showed that the δ subunit consists of a well‐ordered N‐terminal domain and a flexible C‐terminal domain that exhibits a complex hierarchy of partial ordering.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Structure of deformed wing virus, a major honey bee pathogen

Karel Škubník; Jiří Nováček; Tibor Füzik; Antonin Pridal; Robert J. Paxton; Pavel Plevka

Significance Honey bee populations in Europe and North America have been decreasing since the 1950s. Deformed wing virus (DWV), which is undergoing a worldwide epidemic, causes the deaths of individual honey bees and collapse of whole colonies. We determined three-dimensional structures of DWV at different conditions and show that the virus surface is decorated with protruding globular extensions of capsid proteins. The protruding domains contain a putative catalytic site that is probably required for the entry of the virus into the host cell. In addition, parts of the DWV RNA genome interact with the inside of the virus capsid. Identifying the RNA binding and catalytic sites within the DWV virion offers prospects for the development of antiviral treatments. The worldwide population of western honey bees (Apis mellifera) is under pressure from habitat loss, environmental stress, and pathogens, particularly viruses that cause lethal epidemics. Deformed wing virus (DWV) from the family Iflaviridae, together with its vector, the mite Varroa destructor, is likely the major threat to the world’s honey bees. However, lack of knowledge of the atomic structures of iflaviruses has hindered the development of effective treatments against them. Here, we present the virion structures of DWV determined to a resolution of 3.1 Å using cryo-electron microscopy and 3.8 Å by X-ray crystallography. The C-terminal extension of capsid protein VP3 folds into a globular protruding (P) domain, exposed on the virion surface. The P domain contains an Asp-His-Ser catalytic triad that is, together with five residues that are spatially close, conserved among iflaviruses. These residues may participate in receptor binding or provide the protease, lipase, or esterase activity required for entry of the virus into a host cell. Furthermore, nucleotides of the DWV RNA genome interact with VP3 subunits. The capsid protein residues involved in the RNA binding are conserved among honey bee iflaviruses, suggesting a putative role of the genome in stabilizing the virion or facilitating capsid assembly. Identifying the RNA-binding and putative catalytic sites within the DWV virion structure enables future analyses of how DWV and other iflaviruses infect insect cells and also opens up possibilities for the development of antiviral treatments.


Journal of Virology | 2016

Structure and Genome Release Mechanism of the Human Cardiovirus Saffold Virus 3.

Edukondalu Mullapudi; Jiří Nováček; Lenka Pálková; Pavel Kulich; A. Michael Lindberg; Frank J. M. van Kuppeveld; Pavel Plevka

ABSTRACT In order to initiate an infection, viruses need to deliver their genomes into cells. This involves uncoating the genome and transporting it to the cytoplasm. The process of genome delivery is not well understood for nonenveloped viruses. We address this gap in our current knowledge by studying the uncoating of the nonenveloped human cardiovirus Saffold virus 3 (SAFV-3) of the family Picornaviridae. SAFVs cause diseases ranging from gastrointestinal disorders to meningitis. We present a structure of a native SAFV-3 virion determined to 2.5 Å by X-ray crystallography and an 11-Å-resolution cryo-electron microscopy reconstruction of an “altered” particle that is primed for genome release. The altered particles are expanded relative to the native virus and contain pores in the capsid that might serve as channels for the release of VP4 subunits, N termini of VP1, and the RNA genome. Unlike in the related enteroviruses, pores in SAFV-3 are located roughly between the icosahedral 3- and 5-fold axes at an interface formed by two VP1 and one VP3 subunit. Furthermore, in native conditions many cardioviruses contain a disulfide bond formed by cysteines that are separated by just one residue. The disulfide bond is located in a surface loop of VP3. We determined the structure of the SAFV-3 virion in which the disulfide bonds are reduced. Disruption of the bond had minimal effect on the structure of the loop, but it increased the stability and decreased the infectivity of the virus. Therefore, compounds specifically disrupting or binding to the disulfide bond might limit SAFV infection. IMPORTANCE A capsid assembled from viral proteins protects the virus genome during transmission from one cell to another. However, when a virus enters a cell the virus genome has to be released from the capsid in order to initiate infection. This process is not well understood for nonenveloped viruses. We address this gap in our current knowledge by studying the genome release of Human Saffold virus 3. Saffold viruses cause diseases ranging from gastrointestinal disorders to meningitis. We show that before the genome is released, the Saffold virus 3 particle expands, and holes form in the previously compact capsid. These holes serve as channels for the release of the genome and small capsid proteins VP4 that in related enteroviruses facilitate subsequent transport of the virus genome into the cell cytoplasm.


Virus Genes | 2018

Role of SH3b binding domain in a natural deletion mutant of Kayvirus endolysin LysF1 with a broad range of lytic activity

Martin Benešík; Jiří Nováček; Lubomír Janda; Radka Dopitová; Markéta Pernisová; Kateřina Melková; Lenka Tišáková; Jiří Doškař; Lukáš Žídek; Jan Hejátko; Roman Pantůček

The spontaneous host-range mutants 812F1 and K1/420 are derived from polyvalent phage 812 that is almost identical to phage K, belonging to family Myoviridae and genus Kayvirus. Phage K1/420 is used for the phage therapy of staphylococcal infections. Endolysin of these mutants designated LysF1, consisting of an N-terminal cysteine-histidine-dependent aminohydrolase/peptidase (CHAP) domain and C-terminal SH3b cell wall-binding domain, has deleted middle amidase domain compared to wild-type endolysin. In this work, LysF1 and both its domains were prepared as recombinant proteins and their function was analyzed. LysF1 had an antimicrobial effect on 31 Staphylococcus species of the 43 tested. SH3b domain influenced antimicrobial activity of LysF1, since the lytic activity of the truncated variant containing the CHAP domain alone was decreased. The results of a co-sedimentation assay of SH3b domain showed that it was able to bind to three types of purified staphylococcal peptidoglycan 11.2, 11.3, and 11.8 that differ in their peptide bridge, but also to the peptidoglycan type 11.5 of Streptococcus uberis, and this capability was verified in vivo using the fusion protein with GFP and fluorescence microscopy. Using several different approaches, including NMR, we have not confirmed the previously proposed interaction of the SH3b domain with the pentaglycine bridge in the bacterial cell wall. The new naturally raised deletion mutant endolysin LysF1 is smaller than LysK, has a broad lytic spectrum, and therefore is an appropriate enzyme for practical use. The binding spectrum of SH3b domain covering all known staphylococcal peptidoglycan types is a promising feature for creating new chimeolysins by combining it with more effective catalytic domains.

Collaboration


Dive into the Jiří Nováček's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Libor Krásný

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Hana Šanderová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lubomír Janda

Central European Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Radka Dopitová

Central European Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge