Jiri Pavelec
Vienna University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiri Pavelec.
Angewandte Chemie | 2014
Martin Setvin; Xianfeng Hao; Benjamin Daniel; Jiri Pavelec; Zbynek Novotny; Gareth S. Parkinson; Michael Schmid; Georg Kresse; Cesare Franchini; Ulrike Diebold
A combination of photoemission, atomic force, and scanning tunneling microscopy/spectroscopy measurements shows that excess electrons in the TiO2 anatase (101) surface are trapped at step edges. Consequently, steps act as preferred adsorption sites for O2 . In density functional theory calculations electrons localize at clean step edges, this tendency is enhanced by O vacancies and hydroxylation. The results show the importance of defects for the wide-ranging applications of titania.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Roland Bliem; Jessi E. S. van der Hoeven; Jan Hulva; Jiri Pavelec; Oscar Gamba; Petra E. de Jongh; Michael Schmid; Peter Blaha; Ulrike Diebold; Gareth S. Parkinson
Significance The catalytic activity of metal particles is highly size-dependent in the subnanometer regime, which makes understanding how and why particle sizes change in reactive atmospheres particularly important. Here, we show that carbon monoxide plays a dual role in the coarsening of otherwise highly stable Pt atoms on an Fe3O4(001) support: CO adsorption weakens the adatom–support interaction inducing mobility, and stabilizes the Pt dimer against decay into two adatoms. Our results illustrate how molecules modify the clustering dynamics on surfaces, provide much-needed insight into how deactivation and redispersion can occur in single-atom catalyst systems, and demonstrate an approach to prepare size-distinguished clusters for studies of the size effect. Interactions between catalytically active metal particles and reactant gases depend strongly on the particle size, particularly in the subnanometer regime where the addition of just one atom can induce substantial changes in stability, morphology, and reactivity. Here, time-lapse scanning tunneling microscopy (STM) and density functional theory (DFT)-based calculations are used to study how CO exposure affects the stability of Pt adatoms and subnano clusters at the Fe3O4(001) surface, a model CO oxidation catalyst. The results reveal that CO plays a dual role: first, it induces mobility among otherwise stable Pt adatoms through the formation of Pt carbonyls (Pt1–CO), leading to agglomeration into subnano clusters. Second, the presence of the CO stabilizes the smallest clusters against decay at room temperature, significantly modifying the growth kinetics. At elevated temperatures, CO desorption results in a partial redispersion and recovery of the Pt adatom phase.
Nature Materials | 2016
Daniel Halwidl; Bernhard Stöger; Wernfried Mayr-Schmölzer; Jiri Pavelec; David Fobes; Jin Peng; Zhiqiang Mao; Gareth S. Parkinson; Michael Schmid; Florian Mittendorfer; Josef Redinger; Ulrike Diebold
While perovskite oxides hold promise in applications ranging from solid oxide fuel cells to catalysts, their surface chemistry is poorly understood at the molecular level. Here we follow the formation of the first monolayer of water at the (001) surfaces of Srn+1RunO3n+1 (n = 1, 2) using low-temperature scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory. These layered perovskites cleave between neighboring SrO planes, yielding almost ideal, rocksalt-like surfaces. An adsorbed monomer dissociates and forms a pair of hydroxide ions. The OH stemming from the original molecule stays trapped at Sr-Sr bridge positions, circling the surface OH with a measured activation energy of 187±10 meV. At higher coverage dimers of dissociated water assemble into one-dimensional chains and form a percolating network where water adsorbs molecularly in the gaps. Our work shows the limitations of applying surface chemistry concepts derived for binary rocksalt oxides to perovskites.
Angewandte Chemie | 2015
Roland Bliem; Jessi E. S. van der Hoeven; Adam Zavodny; Oscar Gamba; Jiri Pavelec; Petra E. de Jongh; Michael Schmid; Ulrike Diebold; Gareth S. Parkinson
Metal-support interactions are frequently invoked to explain the enhanced catalytic activity of metal nanoparticles dispersed over reducible metal oxide supports, yet the atomic-scale mechanisms are rarely known. In this report, scanning tunneling microscopy was used to study a Pt1-6/Fe3O4 model catalyst exposed to CO, H2, O2, and mixtures thereof at 550 K. CO extracts lattice oxygen atoms at the cluster perimeter to form CO2, creating large holes in the metal oxide surface. H2 and O2 dissociate on the metal clusters and spill over onto the support. The former creates surface hydroxy groups, which react with the support, ultimately leading to the desorption of water, while oxygen atoms react with Fe from the bulk to create new Fe3O4(001) islands. The presence of the Pt is crucial because it catalyzes reactions that already occur on the bare iron oxide surface, but only at higher temperatures.
Journal of Chemical Physics | 2017
Jiri Pavelec; Jan Hulva; Daniel Halwidl; Roland Bliem; Oscar Gamba; Zdenek Jakub; Florian M. Brunbauer; Michael Schmid; Ulrike Diebold; Gareth S. Parkinson
The adsorption of CO2 on the Fe3O4(001)-(2 × 2)R45° surface was studied experimentally using temperature programmed desorption (TPD), photoelectron spectroscopies (UPS and XPS), and scanning tunneling microscopy. CO2 binds most strongly at defects related to Fe2+, including antiphase domain boundaries in the surface reconstruction and above incorporated Fe interstitials. At higher coverages,CO2 adsorbs at fivefold-coordinated Fe3+ sites with a binding energy of 0.4 eV. Above a coverage of 4 molecules per (2 × 2)R45° unit cell, further adsorption results in a compression of the first monolayer up to a density approaching that of a CO2 ice layer. Surprisingly, desorption of the second monolayer occurs at a lower temperature (≈84 K) than CO2 multilayers (≈88 K), suggestive of a metastable phase or diffusion-limited island growth. The paper also discusses design considerations for a vacuum system optimized to study the surface chemistry of metal oxide single crystals, including the calibration and characterisation of a molecular beam source for quantitative TPD measurements.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Matthias Wilhelm Meier; Jan Hulva; Zdenek Jakub; Jiri Pavelec; Martin Setvin; Roland Bliem; Michael Schmid; Ulrike Diebold; Cesare Franchini; Gareth S. Parkinson
Significance Determining the structure of water on metal oxide surfaces is a key step toward a molecular-level understanding of dissolution, corrosion, geochemistry, and catalysis, but hydrogen bonding and large, complex unit cells present a major challenge to modern theory. Here, we utilize state-of-the-art experimental techniques to guide a density functional theory (DFT)-based search for the minimum-energy configurations of water on Fe3O4(001). A subsurface reconstruction dominates adsorption at all coverages. An ordered array of partially dissociated water agglomerates form at low coverage, and these serve to anchor a hydrogen-bonded network. We argue that similar behavior will occur whenever a surface presents a well-spaced array of active sites for dissociation. Given the propensity of metal oxides to undergo surface reconstructions, this is likely often. Determining the structure of water adsorbed on solid surfaces is a notoriously difficult task and pushes the limits of experimental and theoretical techniques. Here, we follow the evolution of water agglomerates on Fe3O4(001); a complex mineral surface relevant in both modern technology and the natural environment. Strong OH–H2O bonds drive the formation of partially dissociated water dimers at low coverage, but a surface reconstruction restricts the density of such species to one per unit cell. The dimers act as an anchor for further water molecules as the coverage increases, leading first to partially dissociated water trimers, and then to a ring-like, hydrogen-bonded network that covers the entire surface. Unraveling this complexity requires the concerted application of several state-of-the-art methods. Quantitative temperature-programmed desorption (TPD) reveals the coverage of stable structures, monochromatic X-ray photoelectron spectroscopy (XPS) shows the extent of partial dissociation, and noncontact atomic force microscopy (AFM) using a CO-functionalized tip provides a direct view of the agglomerate structure. Together, these data provide a stringent test of the minimum-energy configurations determined via a van der Waals density functional theory (DFT)-based genetic search.
Science | 2018
Jan Balajka; Melissa A. Hines; William J. I. DeBenedetti; Mojmir Komora; Jiri Pavelec; Michael Schmid; Ulrike Diebold
A preference for acids When titanium dioxide surfaces are exposed to water under ambient conditions, an ordered overlayer forms. Balajka et al. studied this process with scanning tunneling microscopy and x-ray photoelectron spectroscopy for water adsorption under vacuum conditions and in air (see the Perspective by Park). The ordered overlayer was only formed in air, the result of the adsorption of organic acids (formic and acetic acids). Although other species such as alcohols were present in much higher concentrations in air, the bidentate adsorption and entropic effects favored acid adsorption. Science, this issue p. 786; see also p. 753 Self-assembled monolayers that form on titanium dioxide surfaces in air are attributed to atmospheric organic acids. Researchers around the world have observed the formation of molecularly ordered structures of unknown origin on the surface of titanium dioxide (TiO2) photocatalysts exposed to air and solution. Using a combination of atomic-scale microscopy and spectroscopy, we show that TiO2 selectively adsorbs atmospheric carboxylic acids that are typically present in parts-per-billion concentrations while effectively repelling other adsorbates, such as alcohols, that are present in much higher concentrations. The high affinity of the surface for carboxylic acids is attributed to their bidentate binding. These self-assembled monolayers have the unusual property of being both hydrophobic and highly water-soluble, which may contribute to the self-cleaning properties of TiO2. This finding is relevant to TiO2 photocatalysis, because the self-assembled carboxylate monolayers block the undercoordinated surface cation sites typically implicated in photocatalysis.
Review of Scientific Instruments | 2018
Jan Balajka; Jiri Pavelec; Mojmir Komora; Michael Schmid; Ulrike Diebold
The structure of the solid-liquid interface often defines the function and performance of materials in applications. To study this interface at the atomic scale, we extended an ultrahigh vacuum (UHV) surface-science chamber with an apparatus that allows bringing a surface in contact with ultrapure liquid water without exposure to air. In this process, a sample, typically a single crystal prepared and characterized in UHV, is transferred into a separate, small chamber. This chamber already contains a volume of ultrapure water ice. The ice is at cryogenic temperature, which reduces its vapor pressure to the UHV range. Upon warming, the ice melts and forms a liquid droplet, which is deposited on the sample. In test experiments, a rutile TiO2(110) single crystal exposed to liquid water showed unprecedented surface purity, as established by X-ray photoelectron spectroscopy and scanning tunneling microscopy. These results enabled us to separate the effect of pure water from the effect of low-level impurities present in the air. Other possible uses of the setup are discussed.
Physical Review B | 2015
Roland Bliem; Jiri Pavelec; Oscar Gamba; Eamon McDermott; Zhiming Wang; Stefan Gerhold; Margareta Wagner; Jacek Osiecki; Karina Schulte; Michael Schmid; Peter Blaha; Ulrike Diebold; Gareth S. Parkinson
Topics in Catalysis | 2017
Oscar Gamba; Jan Hulva; Jiri Pavelec; Roland Bliem; Michael Schmid; Ulrike Diebold; Gareth S. Parkinson