Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiro Ogura is active.

Publication


Featured researches published by Jiro Ogura.


International Journal of Pharmaceutics | 2011

In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid.

Yuki Sato; Shirou Itagaki; Toshimitsu Kurokawa; Jiro Ogura; Masaki Kobayashi; Takeshi Hirano; Mitsuru Sugawara; Ken Iseki

Dietary polyphenols are thought to be beneficial for human health as antioxidants. Coffee beans contain a common polyphenol, chlorogenic acid. Chlorogenic acid is the ester of caffeic acid and quinic acid. Although these polyphenols have received much attention, there is little evidence indicating a relationship between the effect and the rate of absorption. In this study, we focused on the beneficial effects of chlorogenic acid and caffeic acid, a major metabolite of chlorogenic acid. We carried out in vitro and in vivo experiments. In the in vitro study, caffeic acid had stronger antioxidant activity than that of chlorogenic acid. The uptake of chlorogenic acid by Caco-2 cells was much less than that of caffeic acid. The physiological importance of an orally administered compound depends on its availability for intestinal absorption and subsequent interaction with target tissues. We then used an intestinal ischemia-reperfusion model to evaluate antioxidant activities in vivo. We found that both chlorogenic acid and caffeic acid had effects on intestinal ischemia-reperfusion injury. Since caffeic acid has a stronger antioxidant activity than that of chlorogenic acid and chlorogenic acid is hydrolyzed into caffeic acid in the intestine, it is possible that caffeic acid plays a major role in the protective effect of chlorogenic acid against ischemia-reperfusion injury.


Antimicrobial Agents and Chemotherapy | 2013

Megalin Contributes to Kidney Accumulation and Nephrotoxicity of Colistin

Takahiro Suzuki; Hiroaki Yamaguchi; Jiro Ogura; Masaki Kobayashi; Takehiro Yamada; Ken Iseki

ABSTRACT Interest has recently been shown again in colistin because of the increased prevalence of infections caused by multidrug-resistant Gram-negative bacteria. Although the potential for nephrotoxicity is a major dose-limiting factor in colistin use, little is known about the mechanisms that underlie colistin-induced nephrotoxicity. In this study, we focused on an endocytosis receptor, megalin, that is expressed in renal proximal tubules, with the aim of clarifying the role of megalin in the kidney accumulation and nephrotoxicity of colistin. We examined the binding of colistin to megalin by using a vesicle assay. The kidney accumulation, urinary excretion, and concentrations in plasma of colistin in megalin-shedding rats were also evaluated. Furthermore, we examined the effect of megalin ligands and a microtubule-depolymerizing agent on colistin-induced nephrotoxicity. We found that cytochrome c, a typical megalin ligand, inhibited the binding of colistin to megalin competitively. In megalin-shedding rats, renal proximal tubule colistin accumulation was decreased (13.5 ± 1.6 and 21.3 ± 2.6 μg in megalin-shedding and control rats, respectively). Coadministration of colistin and cytochrome c or albumin fragments resulted in a significant decrease in urinary N-acetyl-β-d-glucosaminidase (NAG) excretion, a marker of renal tubular damage (717.1 ± 183.9 mU/day for colistin alone, 500.8 ± 102.4 mU/day for cytochrome c with colistin, and 406.7 ± 156.7 mU/day for albumin fragments with colistin). Moreover, coadministration of colistin and colchicine, a microtubule-depolymerizing agent, resulted in a significant decrease in urinary NAG excretion. In conclusion, our results indicate that colistin acts as a megalin ligand and that megalin plays a key role in the accumulation in the kidney and nephrotoxicity of colistin. Megalin ligands may be new targets for the prevention of colistin-induced nephrotoxicity.


Analytical and Bioanalytical Chemistry | 2015

Determination of ω-6 and ω-3 PUFA metabolites in human urine samples using UPLC/MS/MS.

Ai Sasaki; Hayato Fukuda; Narumi Shiida; Nobuaki Tanaka; Ayako Furugen; Jiro Ogura; Satoshi Shuto; Nariyasu Mano; Hiroaki Yamaguchi

The ω-6 and ω-3 polyunsaturated fatty acids (PUFAs) such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) are the precursors of various bioactive lipid mediators including prostaglandins, thromboxanes, leukotrienes, hydroxyeicosatetraenoic acid, isoprostanes, lipoxins, and resolvins (Rvs). These lipid mediators play important roles in various physiological and pathological processes. The quantitative determination of PUFA metabolites seems necessary for disease research and for developing biomarkers. However, there is a paucity of analytical methods for the quantification of ω-6 and ω-3 PUFA metabolites—the specialized pro-resolving mediators (SPMs) present in the human urine. We developed a method for the quantification of ω-6 and ω-3 PUFA metabolites present in human urine using ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS). The developed method shows good linearity, with a correlation coefficient >0.99 for all of the analytes. The validation results indicate that our method is adequately reliable, accurate, and precise. The method was successfully used to examine urine samples obtained from 43 healthy volunteers. We could identify 20 PUFA metabolites, and this is the first report of the quantitative determination of RvD1, 17(R)-RvD1, 11-dehydro thromboxane B3, RvE2, and 5(S)-HETE in human urine. The urinary 8-iso PGF2α and PGE2 levels were significantly higher in the men smokers than in the men nonsmokers (p < 0.05). In this study, we developed an accurate, precise, and novel analytical method for estimating the ω-6 and ω-3 PUFA metabolites, and this is the first report that the SPMs derived from EPA and DHA are present in human urine.


Journal of Pharmaceutical Sciences | 2013

Renal Uptake of Substrates for Organic Anion Transporters Oat1 and Oat3 and Organic Cation Transporters Oct1 and Oct2 is Altered in Rats with Adenine-Induced Chronic Renal Failure

Hiroki Komazawa; Hiroaki Yamaguchi; Kazuhiro Hidaka; Jiro Ogura; Masaki Kobayashi; Ken Iseki

Chronic renal failure (CRF) leads to decreased drug renal clearance and glomerular filtration rate. However, little is known about renal tubular excretion and reabsorption in CRF. We examined transport activity of renal transporters using rats with adenine-induced CRF. We examined the effect of adenine-induced CRF on mRNA level, protein expression of transporters expressed in kidney by real-time polymerase chain reaction, and western blotting. In vivo kidney uptake clearances of benzylpenicillin and metformin, which are typical substrates for renal organic anion transporters Oat1 and Oat3 and organic cation transporters Oct1 and Oct2, respectively, were evaluated. Protein and mRNA expression levels of Oat1, Oat 3, Oct1, and Oct2 were significantly decreased in adenine-induced CRF rats. On the contrary, levels of P-glycoprotein and Mdr1b mRNA were significantly increased in adenine-induced CRF rats. The mRNA expression levels of Oatp4c1, Mate1, Urat1, Octn2, and Pept1 were significantly decreased. Kidney uptake clearance of benzylpenicillin and that of metformin were significantly decreased in adenine-induced CRF rats. Also, serum from CRF rats did not affect Oat1, Oat3, Oct1, and Oct2 function. In conclusion, our results indicate that adenine-induced CRF affects renal tubular handling of drugs, especially substrates of Oat1, Oat3, Oct1, and Oct2.


Journal of Chromatography B | 2012

A rapid and sensitive LC/ESI–MS/MS method for quantitative analysis of docetaxel in human plasma and its application to a pharmacokinetic study

Hiroaki Yamaguchi; Asuka Fujikawa; Hajime Ito; Nobuaki Tanaka; Ayako Furugen; Kazuaki Miyamori; Natsuko Takahashi; Jiro Ogura; Masaki Kobayashi; Takehiro Yamada; Nariyasu Mano; Ken Iseki

Docetaxel is a taxane family antineoplastic agent widely employed in cancer chemotherapy. We developed a liquid chromatography/tandem mass spectrometry method for the determination of docetaxel in human plasma. Plasma samples were deproteinized by acetonitrile containing internal standard paclitaxel. Chromatographic separation was performed on a TSKgel ODS-100 V 3 μm (50 mm × 2.0 mm i.d.) column using a mobile phase composed of acetonitrile-methanol-water-formic acid (50:5:45:0.1, v/v/v/v). Detection was performed on a triple-quadrupole tandem mass spectrometer with multiple reaction monitoring (MRM) mode via electrospray ionization (ESI) source. This method covered a linearity range of 5-5000 ng/mL with the lower limit of quantification of 5 ng/mL. The intra-day precision and inter-day precision (R.S.D.) of analysis were less than 6.7%, and the accuracy (R.E.) was within ± 9.0% at the concentrations of 5, 20, 200, and 2000 ng/mL. The total run time was 5.0 min. This method was successfully applied for clinical pharmacokinetic investigation.


Journal of Biological Chemistry | 2015

Functional Characterization of 5-Oxoproline Transport via SLC16A1/MCT1

Shotaro Sasaki; Yuya Futagi; Masaki Kobayashi; Jiro Ogura; Ken Iseki

Background: The amino acid derivative 5-oxoproline, which is an endogenous compound in the brain, is a monocarboxylate. Results: Na+-dependent and amino acid transport systems scarcely contributed to 5-oxoproline transport in T98G cells as an astrocyte cell model. Conclusion: 5-Oxoproline is taken up only by the monocarboxylate transporter SLC16A1. Significance: 5-Oxoproline transport may be an important physiological function for SLC16A1. Thyrotropin-releasing hormone is a tripeptide that consists of 5-oxoproline, histidine, and proline. The peptide is rapidly metabolized by various enzymes. 5-Oxoproline is produced by enzymatic hydrolysis in a variety of peptides. Previous studies showed that 5-oxoproline could become a possible biomarker for autism spectrum disorders. Here we demonstrate the involvement of SLC16A1 in the transport of 5-oxoproline. An SLC16A1 polymorphism (rs1049434) was recently identified. However, there is no information about the effect of the polymorphism on SLC16A1 function. In this study, the polymorphism caused an observable change in 5-oxoproline and lactate transport via SLC16A1. The Michaelis constant (Km) was increased in an SLC16A1 mutant compared with that in the wild type. In addition, the proton concentration required to produce half-maximal activation of transport activity (K0.5, H+) was increased in the SLC16A1 mutant compared with that in the wild type. Furthermore, we examined the transport of 5-oxoproline in T98G cells as an astrocyte cell model. Despite the fact that 5-oxoproline is an amino acid derivative, Na+-dependent and amino acid transport systems scarcely contributed to 5-oxoproline transport. Based on our findings, we conclude that H+-coupled 5-oxoproline transport is mediated solely by SLC16A1 in the cells.


Life Sciences | 2008

Alteration of Mrp2 and P-gp expression, including expression in remote organs, after intestinal ischemia-reperfusion.

Jiro Ogura; Masaki Kobayashi; Shirou Itagaki; Takeshi Hirano; Ken Iseki

The present study was carried out in order to identify the changes in expression of multidrug resistance-associated protein (Mrp) 2 and P-glycoprotein (P-gp) in the intestine and remote organs after intestinal ischemia-reperfusion (I/R). Mrp2 expression in the jejunum and liver was decreased at 6 h after I/R. This decrease in Mrp2 expression was associated with an increase in the serum level of IL-6. These results suggest that the decreased Mrp2 expression after intestinal I/R was regulated by IL-6. The expression level of mdr1a in the ileum, which encodes P-gp, was decreased at 6 and 24 h after I/R, and the expression level of mdr1b, also encodes P-gp, was not altered at any time. P-gp protein expression in the ileum was decreased at 6 h after I/R. In the liver, mdr1a expression was decreased at 6 h after I/R, but mdr1b expression was increased at 6 h after I/R. P-gp protein was not altered at any time. In the kidney, mdr1a expression was decreased at 24 h after I/R, but mdr1b expression was not altered at any time. P-gp protein expression in the kidney was decreased at 24 h after I/R, as was mdr1a expression. These results suggest that P-gp expression after intestinal I/R differs in each organ. This is the first report to provide evidence that expression levels of transporters in remote organs are altered intestinal after I/R.


PLOS ONE | 2013

Crucial Residue Involved in L-Lactate Recognition by Human Monocarboxylate Transporter 4 (hMCT4)

Shotaro Sasaki; Masaki Kobayashi; Yuya Futagi; Jiro Ogura; Hiroaki Yamaguchi; Natsuko Takahashi; Ken Iseki

Background Monocarboxylate transporters (MCTs) transport monocarboxylates such as lactate, pyruvate and ketone bodies. These transporters are very attractive therapeutic targets in cancer. Elucidations of the functions and structures of MCTs is necessary for the development of effective medicine which targeting these proteins. However, in comparison with MCT1, there is little information on location of the function moiety of MCT4 and which constituent amino acids govern the transport function of MCT4. The aim of the present work was to determine the molecular mechanism of L-lactate transport via hMCT4. Experimental approach Transport of L-lactate via hMCT4 was determined by using hMCT4 cRNA-injected Xenopus laevis oocytes. hMCT4 mediated L-lactate uptake in oocytes was measured in the absence and presence of chemical modification agents and 4,4′-diisothiocyanostilbene-2,2′-disulphonate (DIDS). In addition, L-lactate uptake was measured by hMCT4 arginine mutants. Immunohistochemistry studies revealed the localization of hMCT4. Results In hMCT4-expressing oocytes, treatment with phenylglyoxal (PGO), a compound specific for arginine residues, completely abolished the transport activity of hMCT4, although this abolishment was prevented by the presence of L-lactate. On the other hand, chemical modifications except for PGO treatment had no effect on the transport activity of hMCT4. The transporter has six conserved arginine residues, two in the transmembrane-spanning domains (TMDs) and four in the intracellular loops. In hMCT4-R278 mutants, the uptake of L-lactate is void of any transport activity without the alteration of hMCT4 localization. Conclusions Our results suggest that Arg-278 in TMD8 is a critical residue involved in substrate, L-lactate recognition by hMCT4.


Biochemical Pharmacology | 2015

Reactive oxygen species derived from xanthine oxidase interrupt dimerization of breast cancer resistance protein, resulting in suppression of uric acid excretion to the intestinal lumen.

Jiro Ogura; Kaori Kuwayama; Shunichi Sasaki; Chihiro Kaneko; Takahiro Koizumi; Keisuke Yabe; Takashi Tsujimoto; Reiko Takeno; Atsushi Takaya; Masaki Kobayashi; Hiroaki Yamaguchi; Ken Iseki

The prevalence of hyperuricemia/gout increases with aging. However, the effect of aging on function for excretion of uric acid to out of the body has not been clarified. We found that ileal uric acid clearance in middle-aged rats (11-12 months) was decreased compared with that in young rats (2 months). In middle-aged rats, xanthine oxidase (XO) activity in the ileum was significantly higher than that in young rats. Inosine-induced reactive oxygen species (ROS), which are derived from XO, also decreased ileal uric acid clearance. ROS derived from XO decreased the active homodimer level of breast cancer resistance protein (BCRP), which is a uric acid efflux transporter, in the ileum. Pre-administration of allopurinol recovered the BCRP homodimer level, resulting in the recovering ileal uric acid clearance. Moreover, we investigated the effects of ROS derived from XO on BCRP homodimer level directly in Caco-2 cells using hypoxanthine. Treatment with hypoxanthine decreased BCRP homodimer level. Treatment with hypoxanthine induced mitochondrial dysfunction, suggesting that the decreasing BCRP homodimer level might be caused by mitochondrial dysfunction. In conclusion, ROS derived from XO decrease BCRP homodimer level, resulting in suppression of function for uric acid excretion to the ileal lumen. ROS derived from XO may cause the suppression of function of the ileum for the excretion of uric acid with aging. The results of our study provide a new insight into the causes of increasing hyperuricemia/gout prevalence with aging.


Biopharmaceutics & Drug Disposition | 2014

Quercetin-3-rhamnoglucoside (rutin) stimulates transport of organic anion compounds mediated by organic anion transporting polypeptide 2B1.

Jiro Ogura; Takahiro Koizumi; Masahiro Segawa; Keisuke Yabe; Kaori Kuwayama; Shunichi Sasaki; Chihiro Kaneko; Takashi Tsujimoto; Masaki Kobayashi; Hiroaki Yamaguchi; Ken Iseki

Quercetin‐3‐rhamnoglucoside (rutin) has a wide spectrum of biochemical and pharmacological activities. Rutin is absorbed mainly in its unmetabolized form. Organic anion transporting polypeptide (OATP) 2B1 is a major uptake transporter in the intestine. Thus, it is important for the prevention of adverse events to understand drug interactions mediated by OATP2B1 in the absorption process. This study assessed the effect of rutin on transport by OATP2B1. Rutin stimulated the uptake of estrone‐3‐sulfate (E‐3‐S), taurocholic acid (TCA), cholic acid (CA) and rosuvastatin by OATP2B1, but not p‐coumaric acid or ferulic acid. The EC50 of rutin for transport by OATP2B1 was 2.32 μm. The Km value of E‐3‐S for OATP2B1 in the presence of rutin (9.21 μm) was almost the same as that in the absence of rutin (8.53 μm). On the other hand, the Vmax of E‐3‐S transport by OATP2B1 in the presence of rutin (270 pmol/mg protein/min) was 1.2‐fold higher than that in the absence of rutin (218 pmol/mg protein/min). Moreover, the expression level of OATP2B1 on the cell membrane was increased by treatment with rutin for 5 min without alteration of the total OATP2B1 expression level. Moreover, the increase in the localization of OATP2B1 at the cell surface was detected by the immunocytochemistry. The stimulatory effect of rutin is a little weak but may affect the absorption of OATP2B1 substrates, because rutin is taken daily in foods and its intestinal concentration would reach the stimulatory range of OATP2B1. Copyright

Collaboration


Dive into the Jiro Ogura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge