Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiro Takito is active.

Publication


Featured researches published by Jiro Takito.


Journal of Clinical Investigation | 1996

Hensin, a new collecting duct protein involved in the in vitro plasticity of intercalated cell polarity.

Jiro Takito; Chinami Hikita; Qais Al-Awqati

Two forms of intercalated cells are present in kidney collecting tubules, the alpha cell has apical endocytosis, apical H+-ATPase and basolateral band 3, while beta cells have reversed polarity of these proteins and no apical endocytosis. When a beta cell line was seeded at high density, it changed into the alpha form. We previously showed that a partially purified 230 kD extracellular matrix protein of high density cells was able to retarget band 3 from apical to basolateral domains and stimulated apical endocytosis in vitro (Van Adelsberg, J., J.C. Edwards, J. Takito, B. Kiss, and Q. Al-Awqati. 1994. Cell. 76:1053-1061). We now purify this protein, which was named hensin, to near homogeneity and find that it belongs to the macrophage scavenger receptor cysteine rich (SRCR) family. An antibody, generated against a fusion protein made from a partial cDNA recognized a 230-kD protein in rabbit kidney and in the intercalated cell line. In vitro, the hensin antibody inhibited expression of apical endocytosis. Hensin was secreted in a polarized manner and bound to the basolateral membrane and extracellular matrix. Immunohistochemistry of the kidney showed that it was expressed only in collecting tubules. Double immunofluorescence with hensin and peanut lectin, H+-ATPase, or band 3 showed many patterns; most alpha-cells had hensin staining while 50% of beta-cells did not. These results suggest that hensin may also be involved in the polarity reversal of intercalated cells in vivo.


Cell | 1994

An induced extracellular matrix protein reverses the polarity of band 3 in intercalated epithelial cells

Janet van Adelsberg; John C. Edwards; Jiro Takito; Brian Kiss; Qais Al-Awqati

The intercalated epithelial cell exists in two interconvertible forms in vivo, one where band 3 protein is apical and the other where it is basolateral. We seeded an immortalized clone of these cells at low density and found that band 3 was apical at confluence. There was little or no apical endocytosis. But when the cells were plated at high density, band 3 was basolateral, and there was vigorous apical endocytosis. Extracellular matrix produced by high density cells was able to retarget band 3 in low density cells and to induce apical endocytosis, as did a 230 kd protein partially purified from this matrix. Therefore, polarized targeting of some proteins is determined by external cues that might determine their polarity by reorganizing the cytoplasm.


EMBO Reports | 2011

The IRE1α-XBP1 pathway is essential for osteoblast differentiation through promoting transcription of Osterix.

Takahide Tohmonda; Yoshiteru Miyauchi; Rajarshi Ghosh; Masaki Yoda; Shinichi Uchikawa; Jiro Takito; Hideo Morioka; Masaya Nakamura; Takao Iwawaki; Kazuhiro Chiba; Yoshiaki Toyama; Fumihiko Urano; Keisuke Horiuchi

During skeletal development, osteoblasts produce large amounts of extracellular matrix proteins and must therefore increase their secretory machinery to handle the deposition. The accumulation of unfolded protein in the endoplasmic reticulum induces an adoptive mechanism called the unfolded protein response (UPR). We show that one of the most crucial UPR mediators, inositol‐requiring protein 1α (IRE1α), and its target transcription factor X‐box binding protein 1 (XBP1), are essential for bone morphogenic protein 2‐induced osteoblast differentiation. Furthermore, we identify Osterix (Osx, a transcription factor that is indispensible for bone formation) as a target gene of XBP1. The promoter region of the Osx gene encodes two potential binding motifs for XBP1, and we show that XBP1 binds to these regions. Thus, the IRE1α–XBP1 pathway is involved in osteoblast differentiation through promoting Osx transcription.


Journal of Cell Biology | 2004

Conversion of ES cells to columnar epithelia by hensin and to squamous epithelia by laminin

Jiro Takito; Qais Al-Awqati

Single-layered epithelia are the first differentiated cell types to develop in the embryo, with columnar and squamous types appearing immediately after blastocyst implantation. Here, we show that mouse embryonic stem cells seeded on hensin or laminin, but not fibronectin or collagen type IV, formed hemispheric epithelial structures whose outermost layer terminally differentiated to an epithelium that resembled the visceral endoderm. Hensin induced columnar epithelia, whereas laminin formed squamous epithelia. At the egg cylinder stage, the distal visceral endoderm is columnar, and these cells begin to migrate anteriorly to create the anterior visceral endoderm, which assumes a squamous shape. Hensin expression coincided with the dynamic appearance and disappearance of columnar cells at the egg cylinder stage of the embryo. These expression patterns, and the fact that hensin null embryos (and those already reported for laminin) die at the onset of egg cylinder formation, support the view that hensin and laminin are required for terminal differentiation of columnar and squamous epithelial phenotypes during early embryogenesis.


Journal of Immunology | 2009

IL-27 Abrogates Receptor Activator of NF-κB Ligand-Mediated Osteoclastogenesis of Human Granulocyte-Macrophage Colony-Forming Unit Cells through STAT1-Dependent Inhibition of c-Fos

Mitsuru Furukawa; Hironari Takaishi; Jiro Takito; Masaki Yoda; Sadaoki Sakai; Tomohiro Hikata; Akihiro Hakozaki; Shinichi Uchikawa; Morio Matsumoto; Kazuhiro Chiba; Tokuhiro Kimura; Yasunori Okada; Koichi Matsuo; Hiroki Yoshida; Yoshiaki Toyama

IL-27 was first discovered as a factor supporting initial Th1 immune responses. Subsequent studies revealed that this cytokine has pleiotropic effects, including inhibition of certain immune cells, a regulatory role in hemopoietic stem cell differentiation, and antitumor activities. However, the role of human IL (hIL)-27 in human osteoclast precursors and inflammatory bone disease is unclear. Here, we examined the direct effect of hIL-27 on human osteoclastogenesis. Human bone marrow cells cultured in MethoCult medium containing human (h) GM-CSF, human stem cell factor, and hIL-3 expressed Mac-1, c-kit, and c-Fms. These cells, called hCFU-GMs, also expressed the IL-27 receptor, an IL-27Rα (WSX-1)/gp130 heterodimer. Cultivation in hM-CSF and human receptor activator of NF-κB ligand induced the differentiation of tartrate-resistant acid phosphatase-positive multinucleated cells (osteoclasts) from hCFU-GMs, and hIL-27 inhibited this osteoclastogenesis in a dose-dependent manner. hIL-27 also repressed bone resorption by osteoclasts on a dentine slice. hIL-27 caused a remarkable increase in STAT1 phosphorylation and enhanced the STAT1 protein level. It also inhibited the expression of receptor activator of NF-κB ligand-induced c-Fos and cytoplasmic, calcineurin-dependent 1 NFAT (NFATc1), which are indispensable transcription factors for osteoclastogenesis. Fludarabine, a STAT1 inhibitor, and STAT1 small interfering RNA partially rescued the inhibition of osteoclastogenesis by IL-27. A WSX-1 deficiency caused severe inflammatory bone destruction primed by Escherichia coli cell wall lysate in vivo. Therefore, hIL-27 may act as an anti-inflammatory cytokine in human bone destruction, by inhibiting osteoclastogenesis from hCFU-GMs via STAT1-dependent down-regulation of the transcription factor c-Fos. Our results suggest that hIL-27 may prove useful as a therapeutic target for inflammatory bone destruction.


Journal of Biological Chemistry | 1999

Only multimeric hensin located in the extracellular matrix can induce apical endocytosis and reverse the polarity of intercalated cells.

Chinami Hikita; Jiro Takito; Soundarapandian Vijayakumar; Qais Al-Awqati

When an intercalated epithelial cell line was seeded at low density and allowed to reach confluence, it located the anion exchanger band 3 in the apical membrane and an H+-ATPase in the basolateral membrane. The same clonal cells seeded at high density targeted these proteins to the reverse location. Furthermore, high density cells had vigorous apical endocytosis, and low density cells had none. The extracellular matrix of high density cells was capable of inducing apical endocytosis and relocation of band 3 to the basolateral membrane in low density cells. A 230-kDa extracellular matrix (ECM) protein termed hensin, when purified to near-homogeneity, was able to reverse the phenotype of the low density cells. Antibodies to hensin prevented this effect, indicating that hensin is necessary for conversion of polarity. We show here that hensin was synthesized by both low density and high density cells. Whereas both phenotypes secreted soluble hensin into their media, only high density cells localized it in their ECM. Analysis of soluble hensin by sucrose density gradients showed that low density cells secreted monomeric hensin, and high density cells secreted higher order multimers. When 35S-labeled monomeric hensin was added to high density cells, they induced its aggregation suggesting that the multimerization was catalyzed by surface events in the high density cells. Soluble monomeric or multimeric hensin did not induce apical endocytosis in low density cells, whereas the more polymerized hensin isolated from insoluble ECM readily induced it. These multimers could be disaggregated by sulfhydryl reagents and by dimethylmaleic anhydride, and treatment of high density ECM by these reagents prevented the induction of endocytosis. These results demonstrate that hensin, like several ECM proteins, needs to be precipitated in the ECM to be functional.


Journal of Immunology | 2007

Cell Surface Colony-Stimulating Factor 1 Can Be Cleaved by TNF-α Converting Enzyme or Endocytosed in a Clathrin-Dependent Manner

Keisuke Horiuchi; Takeshi Miyamoto; Hironari Takaishi; Akihiro Hakozaki; Naoto Kosaki; Yoshiteru Miyauchi; Mitsuru Furukawa; Jiro Takito; Hironori Kaneko; Kenichiro Matsuzaki; Hideo Morioka; Carl P. Blobel; Yoshiaki Toyama

CSF-1 is a hemopoietic growth factor, which plays an essential role in macrophage and osteoclast development. Alternative splice variants of CSF-1 are synthesized as soluble or membrane-anchored molecules, although membrane CSF-1 (mCSF-1) can be cleaved from the cell membrane to become soluble CSF-1. The activities involved in this proteolytic processing, also referred to as ectodomain shedding, remain poorly characterized. In the present study, we examined the properties of the mCSF-1 sheddase in cell-based assays. Shedding of mCSF-1 was up-regulated by phorbol ester treatment and was inhibited by the metalloprotease inhibitors GM6001 and tissue inhibitor of metalloproteases 3. Moreover, the stimulated shedding of mCSF-1 was abrogated in fibroblasts lacking the TNF-α converting enzyme (TACE, also known as a disintegrin and metalloprotease 17) and was rescued by expression of wild-type TACE in these cells, strongly suggesting that the stimulated shedding is TACE dependent. Additionally, we observed that mCSF-1 is predominantly localized to intracellular membrane compartments and is efficiently internalized in a clathrin-dependent manner. These results indicate that the local availability of mCSF-1 is actively regulated by ectodomain shedding and endocytosis. This mechanism may have important implications for the development and survival of monocyte lineage cells.


Blood | 2011

Dual functions of cell-autonomous and non-cell-autonomous ADAM10 activity in granulopoiesis

Masaki Yoda; Tokuhiro Kimura; Takahide Tohmonda; Shinichi Uchikawa; Takeshi Koba; Jiro Takito; Hideo Morioka; Morio Matsumoto; Daniel C. Link; Kazuhiro Chiba; Yasunori Okada; Yoshiaki Toyama; Keisuke Horiuchi

Previous studies have revealed various extrinsic stimuli and factors involved in the regulation of hematopoiesis. Among these, Notch-mediated signaling has been suggested to be critically involved in this process. Herein, we show that conditional inactivation of ADAM10, a membrane-bound protease with a crucial role in Notch signaling (S2 cleavage), results in myeloproliferative disorder (MPD) highlighted by severe splenomegaly and increased populations of myeloid cells and hematopoietic stem cells. Reciprocal transfer of bone marrow cells between wild-type and ADAM10 mutant mice revealed that ADAM10 activity in both hematopoietic and nonhematopoietic cells is involved in the development of MPD. Notably, we found that MPD caused by lack of ADAM10 in nonhematopoietic cells was mediated by G-CSF, whereas MPD caused by ADAM10-deficient hematopoietic cells was not. Taken together, the present findings reveal previously undescribed nonredundant roles of cell-autonomous and non-cell-autonomous ADAM10 activity in the maintenance of hematopoiesis.


Journal of Orthopaedic Research | 2010

Inhibition of STAT1 accelerates bone fracture healing

Kosuke Tajima; Hironari Takaishi; Jiro Takito; Takahide Tohmonda; Masaki Yoda; Norikazu Ota; Naoto Kosaki; Morio Matsumoto; Hiroyasu Ikegami; Toshiyasu Nakamura; Tokuhiro Kimura; Yasunori Okada; Keisuke Horiuchi; Kazuhiro Chiba; Yoshiaki Toyama

Skeletal fracture healing involves a variety of cellular and molecular events; however, the mechanisms behind these processes are not fully understood. In the current study, we investigated the potential involvement of the signal transducer and activator of transcription 1 (STAT1), a critical regulator for both osteoclastogenesis and osteoblast differentiation, in skeletal fracture healing. We used a fracture model and a cortical defect model in mice, and found that fracture callus remodeling and membranous ossification are highly accelerated in STAT1‐deficient mice. Additionally, we found that STAT1 suppresses Osterix transcript levels and Osterix promoter activity in vitro, indicating the suppression of Osterix transcription as one of the mechanisms behind the inhibitory effect of STAT1 on osteoblast differentiation. Furthermore, we found that fludarabine, a potent STAT1 inhibitor, significantly increases bone formation in a heterotopic ossification model. These results reveal previously unknown functions of STAT1 in skeletal homeostasis and may have important clinical implications for the treatment of skeletal bone fracture.


Endocrinology | 2009

Accelerated cartilage resorption by chondroclasts during bone fracture healing in osteoprotegerin-deficient mice.

Norikazu Ota; Hironari Takaishi; Naoto Kosaki; Jiro Takito; Masaki Yoda; Takahide Tohmonda; Tokuhiro Kimura; Yasunori Okada; Hisataka Yasuda; Hiroshi Kawaguchi; Morio Matsumoto; Kazuhiro Chiba; Hiroyasu Ikegami; Yoshiaki Toyama

Receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPG), a decoy receptor of RANKL, maintain bone mass by regulating the differentiation of osteoclasts, which are bone-resorbing cells. Endochondral bone ossification and bone fracture healing involve cartilage resorption, a less well-understood process that is needed for replacement of cartilage by bone. Here we describe the role of OPG produced by chondrocytes in chondroclastogenesis. Fracture healing in OPG(-/-) mice showed faster union of the fractured bone, faster resorption of the cartilaginous callus, and an increased number of chondroclasts at the chondroosseous junctions compared with that in wild-type littermates. When a cultured pellet of OPG(-/-) chondrocytes was transplanted beneath the kidney capsule, the pellet recruited many chondroclasts. The pellet showed the ability to induce tartrate-resistant acid phosphatase-positive multinucleated cells from RAW 264.7 cells in vitro. Finally, OPG(-/-) chondrocytes (but not wild-type chondrocytes) cultured with spleen cells induced many tartrate-resistant acid phosphatase-positive multinucleated cells. The expression of RANKL and OPG in chondrocytes was regulated by several osteotropic factors including 1,25-dihydroxyvitamin D(3), PTHrP, IL-1alpha, and TNF-alpha. Thus, local OPG produced by chondrocytes probably controls cartilage resorption as a negative regulator for chondrocyte-dependent chondroclastogenesis.

Collaboration


Dive into the Jiro Takito's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuhiro Chiba

National Defense Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge