Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiro Yasuda is active.

Publication


Featured researches published by Jiro Yasuda.


Journal of Virology | 2009

Inhibition of Lassa and Marburg Virus Production by Tetherin

Toshie Sakuma; Takeshi Noda; Shuzo Urata; Yoshihiro Kawaoka; Jiro Yasuda

ABSTRACT Recently, tetherin has been identified as an effective cellular factor that prevents the release of human immunodeficiency virus type 1. Here, we show that the production of virus-like particles induced by viral matrix proteins of Lassa virus or Marburg virus was markedly inhibited by tetherin and that N-linked glycosylation of tetherin was dispensable for this antiviral activity. Our data also suggest that viral matrix proteins or one or more components that originate from host cells are targets of tetherin but that viral surface glycoproteins are not. These results suggest that tetherin inhibits the release of a wide variety of enveloped viruses from host cells by a common mechanism.


Journal of Virology | 2003

Nedd4 Regulates Egress of Ebola Virus-Like Particles from Host Cells

Jiro Yasuda; Mitsuyoshi Nakao; Yoshihiro Kawaoka; Hisatoshi Shida

ABSTRACT Ebola virus budding is mediated by two proline-rich motifs, PPxY and PTAP, within the viral matrix protein VP40. We have previously shown that a Nedd4-like protein BUL1, but not Nedd4, positively regulates budding of type D retrovirus Mason-Pfizer monkey virus (J. Yasuda, E. Hunter, M. Nakao, and H. Shida, EMBO Rep. 3:636-640, 2002). Here, we report that the cellular E3 ubiquitin ligase Nedd4 regulates budding of VP40-induced virus-like particles (VLPs) through interaction with the PPxY motif. Mutation of the active site cysteine (C894A), resulting in abrogation of ubiquitin ligase activity, impaired the function of Nedd4 on budding. In addition, the WW domains of Nedd4 are essential for binding to the viral PPxY motif, and a small fragment of Nedd4 containing only WW domains significantly inhibited Ebola VLP budding in a dominant-negative manner. Our findings suggest that the viruses containing PPxY as an L-domain motif specifically use E3 in the process of virus budding. We also examined the effects of overexpression of Tsg101 and its mutant. As expected, Tsg101 enhanced VP40-induced VLP release, and TsgΔC, which lacks its C-terminal half, inhibited VLP release. These results indicate that Nedd4, together with Tsg101, plays an important role in Ebola virus budding.


Journal of Virology | 2006

Cellular Factors Required for Lassa Virus Budding

Shuzo Urata; Takeshi Noda; Yoshihiro Kawaoka; Hideyoshi Yokosawa; Jiro Yasuda

ABSTRACT It is known that Lassa virus Z protein is sufficient for the release of virus-like particles (VLPs) and that it has two L domains, PTAP and PPPY, in its C terminus. However, little is known about the cellular factor for Lassa virus budding. We examined which cellular factors are used in Lassa virus Z budding. We demonstrated that Lassa Z protein efficiently produces VLPs and uses cellular factors, Vps4A, Vps4B, and Tsg101, in budding, suggesting that Lassa virus budding uses the multivesicular body pathway functionally. Our data may provide a clue to develop an effective antiviral strategy for Lassa virus.


EMBO Reports | 2002

Functional involvement of a novel Nedd4-like ubiquitin ligase on retrovirus budding

Jiro Yasuda; Eric Hunter; Mitsuyoshi Nakao; Hisatoshi Shida

In this study, we have identified a novel Nedd4‐like ubiquitin ligase, BUL1, as the host factor involved in budding of type D retrovirus Mason‐Pfizer monkey virus (M‐PMV). Overexpression of BUL1 enhanced virus particle release, while a BUL1 mutant in which a W to G substitution was introduced into a WW domain, W791G, lost the ability to bind to the viral Gag protein and abolished its ability to mediate virus budding. In addition, a fragment of BUL1 containing only the WW domains inhibited virus budding in a dominant negative manner. These results, together with previous findings, indicate that the M‐PMV Gag L domain interacts with the BUL1 WW domain and that this interaction is essential for virus budding. Our observations provide new insights into the mechanism of virus budding, and could be useful in establishing new antiviral strategies targeted at progeny virus release from a host cell.


Biochemical Journal | 2005

The penta-EF-hand protein ALG-2 interacts directly with the ESCRT-I component TSG101, and Ca2+-dependently co-localizes to aberrant endosomes with dominant-negative AAA ATPase SKD1/Vps4B.

Keiichi Katoh; Hidenori Suzuki; Yoshinori Terasawa; Takako Mizuno; Jiro Yasuda; Hideki Shibata; Masatoshi Maki

ALG-2 (apoptosis-linked gene 2) is a Ca2+-binding protein that belongs to the PEF (penta-EF-hand) protein family. Alix (ALG-2-interacting protein X)/AIP1 (ALG-2-interacting protein 1), one of its binding partners, interacts with TSG101 and CHMP4 (charged multivesicular body protein 4), which are components of ESCRT-I (endosomal sorting complex required for transport I) and ESCRT-III respectively. In the present study, we investigated the association between ALG-2 and ESCRT-I. By a GST (glutathione S-transferase) pull-down assay using HEK-293T (human embryonic kidney 293T) cell lysates, endogenous TSG101 and two other exogenously expressed ESCRT-I components [hVps28 (human vacuolar protein sorting 28) and hVps37A] were shown to associate with GST-ALG-2 in the presence of Ca2+. By the yeast two-hybrid assay, however, a positive interaction was observed with only TSG101 among the three ESCRT-I components, suggesting that ALG-2 associates with hVps28 and hVps37A indirectly through TSG101. Using various deletion mutants of TSG101, the central PRR (proline-rich region) was found to be sufficient for interaction with ALG-2 by the GST-pull-down assay. Direct binding of ALG-2 to the TSG101 PRR was demonstrated by an overlay assay using biotin-labelled ALG-2 as a probe. In immunofluorescence microscopic analysis of HeLa cells that overexpressed a GFP (green fluorescent protein)-fused ATPase-defective dominant-negative form of SKD1/Vps4B (GFP-SKD1(E235Q)), ALG-2 exhibited a punctate distribution at the perinuclear area and co-localized with GFP-SKD1(E235Q) to aberrant endosomes. This punctate distribution of ALG-2 was markedly diminished by treatment of HeLa cells with a membrane-permeant Ca2+ chelator. Moreover, a Ca2+-binding-defective mutant of ALG-2 did not co-localize with GFP-SKD1(E235Q). Our findings suggest that ALG-2 may function as a Ca2+-dependent accessory protein of the endosomal sorting machinery by interacting directly with TSG101 as well as with Alix.


Journal of General Virology | 2011

Tumour susceptibility gene 101 and the vacuolar protein sorting pathway are required for the release of hepatitis E virions.

Shigeo Nagashima; Masaharu Takahashi; Suljid Jirintai; Toshinori Tanaka; Tsutomu Nishizawa; Jiro Yasuda; Hiroaki Okamoto

We have previously demonstrated that an intact PSAP motif in the ORF3 protein is required for the formation and release of membrane-associated hepatitis E virus (HEV) particles with ORF3 proteins on their surface. In this study, we investigated the direct interaction between the ORF3 protein and tumour susceptibility gene 101 (Tsg101), a cellular factor involved in the budding of viruses containing the P(T/S)AP late-domain, in PLC/PRF/5 cells expressing the wild-type or PSAP-mutated ORF3 protein and Tsg101 by co-immunoprecipitation. Tsg101 bound to wild-type ORF3 protein, but not to the PSAP-inactive ORF3 protein. To examine whether HEV utilizes the multivesicular body (MVB) pathway to release the virus particles, we analysed the efficiency of virion release from cells upon introduction of small interfering RNA (siRNA) against Tsg101 or dominant-negative (DN) mutants of Vps4 (Vps4A and Vps4B). The relative levels of virus particles released from cells depleted of Tsg101 decreased to 6.4 % of those transfected with negative control siRNA. Similarly, virion egress was significantly reduced by the overexpression of DN forms (Vps4AEQ or Vps4BEQ). The relative levels of virus particles released from cells expressing Vps4AEQ and Vps4BEQ were 19.2 and 15.6 %, respectively, while the overexpression of wild-type Vps4A and Vps4B did not alter the levels of virus release. These results indicate that the ORF3 protein interacts with Tsg101 through the PSAP motifs in infected cells, and that Tsg101 and the enzymic activities of Vps4A and Vps4B are involved in HEV release, thus suggesting that HEV requires the MVB pathway for egress of virus particles.


Microbiological Research | 2011

Rapid discrimination of Legionella by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

Yoshihito Fujinami; Hitomi S. Kikkawa; Yohei Kurosaki; Koichi Sakurada; Mineo Yoshino; Jiro Yasuda

Molecular typing is an important tool in the surveillance and investigation of human Legionella infection outbreaks. In this study, two molecular typing methods, pulsed-field gel electrophoresis (PFGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), were used to discriminate 23 Legionella pneumophila strains. The usefulness of MALDI-TOF-MS was demonstrated. The MALDI-TOF-MS fingerprinting with filtered small acid-soluble molecules gave different molecular profiles among strains, and the clustal analysis with MALDI-TOF-MS showed a high discrimination of strains the same as that with PFGE. In addition, MALDI-TOF-MS data could be generated within a few hours after the initial culture, although PFGE analyses took several days to complete. Thus, MALDI-TOF-MS offers a simple and rapid discrimination technique that could aid in the tracking of fast-spreading outbreaks of Legionella.


Biochemical Journal | 2006

CHMP7, a novel ESCRT-III-related protein, associates with CHMP4b and functions in the endosomal sorting pathway

Mio Horii; Hideki Shibata; Ryota Kobayashi; Keiichi Katoh; Chiharu Yorikawa; Jiro Yasuda; Masatoshi Maki

All CHMPs (charged multivesicular body proteins) reported to date have common features: they all contain approx. 200 amino acid residues, have coiled-coil regions and have a biased distribution of charged residues (basic N-terminal and acidic C-terminal halves). Yeast orthologues of CHMPs, including an ESCRT-III component Snf7, are required for the sorting of cargo proteins to intraluminal vesicles of multivesicular bodies. We have characterized a novel human ESCRT-III-related protein, designated CHMP7, which consists of 453 amino acid residues. CHMP7 contains an SNF7 domain and a distantly SNF7-related domain in its C-terminal half and N-terminal half respectively. Among the ten CHMP proteins classified previously in six subfamilies (CHMP1-CHMP6), the C-terminal SNF7 domain of CHMP7 is most similar to the SNF7 domain of CHMP6, which associates with CHMP4 proteins and EAP20, a component of ESCRT-II. Pull-down assays using lysates of HEK-293T (human embryonic kidney) cells that overexpressed Strep-tagged CHMP7 and GFP (green fluorescent protein)-fused CHMP4b (also named Shax1) revealed a positive interaction between the C-terminal half of CHMP7 and CHMP4b. However, interaction was not observed between CHMP7 and EAP20. Confocal fluorescence microscopic analyses revealed that FLAG-CHMP7 is distributed in HeLa cells diffusely throughout the cytoplasm, but with some accumulation, especially in the perinuclear area. The distribution of FLAG-CHMP7 was altered to a cytoplasmic punctate pattern by overexpression of either CHMP4b-GFP or GFP-Vps4B(E235Q), a dominant-negative mutant of the AAA (ATPase associated with various cellular activities) Vps4B, and partially co-localized with them. Ubiquitinated proteins and endocytosed EGF accumulated in GFP-CHMP7-expressing cells. A dominant-negative effect of overexpressed GFP-CHMP7 was also observed in the release of virus-like particles from HEK-293T cells that transiently expressed the MLV (murine leukaemia virus) Gag protein. These results suggest that CHMP7, a novel CHMP4-associated ESCRT-III-related protein, functions in the endosomal sorting pathway.


Journal of Virology | 2009

The Z Protein of the New World Arenavirus Tacaribe Virus Has Bona Fide Budding Activity That Does Not Depend on Known Late Domain Motifs

Shuzo Urata; Jiro Yasuda; Juan Carlos de la Torre

ABSTRACT The arenavirus small RING finger Z protein has been shown to be the main driving force of budding for several arenaviruses. This Z budding activity was found to be mediated by the late (L)-domain motifs P(T/S)AP and PPXY, located at the C terminus of Z. Here, we show that the Z protein of Tacaribe virus (TACV), a New World arenavirus, buds efficiently from cells despite lacking the canonical L-domain motifs P(T/S)AP and PPXY. Likewise, potential L-domain motifs ASAP and YLCL present in TACV Z did not exhibit any significant contribution to TACV Z budding activity. Budding of TACV Z was Tsg101 independent but required the activity of Vps4A/B. These results indicate that TACV Z utilizes a budding mechanism distinct from that reported for other arenaviruses.


Microbiology and Immunology | 2007

Sensitive Detection of Bacillus anthracis Using a Binding Protein Originating from γ-Phage

Yoshihito Fujinami; Yoshikazu Hirai; Ikuko Sakai; Mineo Yoshino; Jiro Yasuda

Detection of biological weapons is a primary concern in force protection, treaty verification, and safeguarding civilian populations against domestic terrorism. One great concern is the detection of Bacillus anthracis, the causative agent of anthrax. Therefore, there is a pressing need to develop novel methods for rapid, simple, and precise detection of B. anthracis. Here, we report that the C‐terminal region of γ‐phage lysin protein (PlyG) binds specifically to the cell wall of B. anthracis and the recombinant protein corresponding to this region (positions, 156–233), PlyGB, is available as a bioprobe for detection of B. anthracis. Our detection method, based on a membrane direct blot assay using recombinant PlyGB, was more rapid and sensitive than the γ‐phage test and was simpler and more inexpensive than genetic methods such as PCR, or immunological methods using specific antibodies. Furthermore, its specificity was comparable to the γ‐phage test. PlyGB is applicable in conventional methods instead of antibodies and could be a potent tool for detection of B. anthracis.

Collaboration


Dive into the Jiro Yasuda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshihiro Kawaoka

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masumi Abe

National Research Institute of Police Science

View shared research outputs
Top Co-Authors

Avatar

Yoshihito Fujinami

National Research Institute of Police Science

View shared research outputs
Top Co-Authors

Avatar

Aiko Fukuma

National Research Institute of Police Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge