Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jirong Huang is active.

Publication


Featured researches published by Jirong Huang.


Plant Journal | 2009

The Arabidopsis gene YS1 encoding a DYW protein is required for editing of rpoB transcripts and the rapid development of chloroplasts during early growth.

Wenbin Zhou; Yuxiang Cheng; Aaron Yap; Anne-Laure Chateigner-Boutin; Etienne Delannoy; Kamel Hammani; Ian Small; Jirong Huang

Virescence, a phenotype in which leaves green more slowly than usual, is recognized to play a role in protection from photo-oxidative damage before healthy chloroplasts are developed. The elucidation of the molecular mechanisms underlying virescence will provide insights into how the development of chloroplasts is controlled. In this study, we find that knockout alleles of Yellow Seedlings 1 (YS1) in Arabidopsis lead to a virescent phenotype, which disappears by 3 weeks after germination. The ys1 mutation resulted in marked decreases in photosynthetic capacity and photosynthetic pigment complexes, and disturbed ultrastructure of thylakoid membranes in 8-day-old seedlings. However, cotyledons of ys1 seedlings pre-treated in the dark for 5 days turn green almost as fast as the wild type in light, revealing that the developmental defects in ys1 are limited to the first few days after germination. Inspection of all known plastid RNA editing and splicing events revealed that YS1 is absolutely required for editing of site 25992 in rpoB transcripts encoding the beta subunit of the plastid-encoded RNA polymerase (PEP). YS1 is a nuclear-encoded chloroplast-localized pentatricopeptide repeat protein differing from previously described editing factors in that it has a C-terminal DYW motif. A defect in PEP activity is consistent with the changes in plastid transcript patterns observed in ys1 seedlings. We conclude that the activity of PEP containing RpoB translated from unedited transcripts is insufficient to support rapid chloroplast differentiation.


Molecular Plant | 2012

Arabidopsis TT19 Functions as a Carrier to Transport Anthocyanin from the Cytosol to Tonoplasts

Yi Sun; Hong Li; Jirong Huang

Anthocyanins are synthesized in the cytosolic surface of the endoplasmic reticulum (ER) but dominantly accumulate in the vacuole. Little is known about how anthocyanins are transported from the ER to the vacuole. Here, we provide evidence supporting that Transparent Testa 19 (TT19), a glutathione S-transferase (GST), functions as a carrier to transport cyanidin and/or anthocyanins to the tonoplast. We identified a novel tt19 mutant (tt19-7), which barely accumulates anthocyanins but produces a 36% higher level of flavonol than the wild-type (WT), from ethyl methanesulfonate mutagenized seeds. Expressing TT19-fused green fluorescence protein (GFP) in tt19-7 rescues the mutant phenotype in defective anthocyanin biosynthesis, indicating that TT19-GFP is functional. We further showed that TT19-GFP is localized not only in the cytoplasm and nuclei, but also on the tonoplast. The membrane localization of TT19-GFP was further ascertained by immunoblot analysis. In vitro assay showed that the purified recombinant TT19 increases water solubility of cyanidin (Cya) and cyanidin-3-O-glycoside (C3G). Compared with C3G, Cya can dramatically quench the intrinsic tryptophan fluorescence of TT19 to much lower levels, indicating a higher affinity of TT19 to Cya than to C3G. Isothermal titration calorimetry analysis also confirmed physical interaction between TT19 and C3G. Taken together, our data reveal molecular mechanism underlying TT19-mediated anthocyanin transportation.


PLOS Genetics | 2014

Arabidopsis miR171-targeted scarecrow-like proteins bind to GT cis-elements and mediate gibberellin-regulated chlorophyll biosynthesis under light conditions.

Zhaoxue Ma; Xupeng Hu; Wenjuan Cai; Weihua Huang; Xin Zhou; Qian Luo; Hong-Quan Yang; Jia-Wei Wang; Jirong Huang

An extraordinarily precise regulation of chlorophyll biosynthesis is essential for plant growth and development. However, our knowledge on the complex regulatory mechanisms of chlorophyll biosynthesis is very limited. Previous studies have demonstrated that miR171-targeted scarecrow-like proteins (SCL6/22/27) negatively regulate chlorophyll biosynthesis via an unknown mechanism. Here we showed that SCLs inhibit the expression of the key gene encoding protochlorophyllide oxidoreductase (POR) in light-grown plants, but have no significant effect on protochlorophyllide biosynthesis in etiolated seedlings. Histochemical analysis of β-glucuronidase (GUS) activity in transgenic plants expressing pSCL27::rSCL27-GUS revealed that SCL27-GUS accumulates at high levels and suppresses chlorophyll biosynthesis at the leaf basal proliferation region during leaf development. Transient gene expression assays showed that the promoter activity of PORC is indeed regulated by SCL27. Consistently, chromatin immunoprecipitation and quantitative PCR assays showed that SCL27 binds to the promoter region of PORC in vivo. An electrophoretic mobility shift assay revealed that SCL27 is directly interacted with G(A/G)(A/T)AA(A/T)GT cis-elements of the PORC promoter. Furthermore, genetic analysis showed that gibberellin (GA)-regulated chlorophyll biosynthesis is mediated, at least in part, by SCLs. We demonstrated that SCL27 interacts with DELLA proteins in vitro and in vivo by yeast-two-hybrid and coimmunoprecipitation analysis and found that their interaction reduces the binding activity of SCL27 to the PORC promoter. Additionally, we showed that SCL27 activates MIR171 gene expression, forming a feedback regulatory loop. Taken together, our data suggest that the miR171-SCL module is critical for mediating GA-DELLA signaling in the coordinate regulation of chlorophyll biosynthesis and leaf growth in light.


Plant Journal | 2011

Characterization of the Arabidopsis glycerophosphodiester phosphodiesterase (GDPD) family reveals a role of the plastid-localized AtGDPD1 in maintaining cellular phosphate homeostasis under phosphate starvation.

Yuxiang Cheng; Wenbin Zhou; Nabil Ibrahim El sheery; Carlotta Peters; Maoyin Li; Xuemin Wang; Jirong Huang

Glycerophosphodiester phosphodiesterase (GDPD), which hydrolyzes glycerophosphodiesters into sn-glycerol-3-phosphate (G-3-P) and the corresponding alcohols, plays an important role in various physiological processes in both prokaryotes and eukaryotes. However, little is known about the physiological significance of GDPD in plants. Here, we characterized the Arabidopsis GDPD family that can be classified into canonical GDPD (AtGDPD1-6) and GDPD-like (AtGDPDL1-7) subfamilies. In vitro analysis of enzymatic activities showed that AtGDPD1 and AtGDPDL1 hydrolyzed glycerolphosphoglycerol, glycerophosphocholine and glycerophosphoethanolamine, but the maximum activity of AtGDPD1 was much higher than that of AtGDPDL1 under our assay conditions. Analyses of gene expression patterns revealed that all AtGDPD genes except for AtGDPD4 were transcriptionally active in flowers and siliques. In addition, the gene family displayed overlapping and yet distinguishable patterns of expression in roots, leaves and stems, indicating functional redundancy as well as specificity of GDPD genes. AtGDPDs but not AtGDPDLs are up-regulated by inorganic phosphate (P(i) ) starvation. Loss-of-function of the plastid-localized AtGDPD1 leads to a significant decrease in GDPD activity, G-3-P content, P(i) content and seedling growth rate only under P(i) starvation compared with the wild type (WT). However, membrane lipid compositions in the P(i) -deprived seedlings remain unaltered between the AtGDPD1 knockout mutant and WT. Thus, we suggest that the GDPD-mediated lipid metabolic pathway may be involved in release of P(i) from phospholipids during P(i) starvation.


Plant Journal | 2009

Activation of the heterotrimeric G protein α‐subunit GPA1 suppresses the ftsh‐mediated inhibition of chloroplast development in Arabidopsis

Qing Wei; Wenjuan Wu; Yuxiang Cheng; Guangzhen Hu; Fenhong Hu; Yi Sun; Ying Zhu; Wataru Sakamoto; Jirong Huang

Heterotrimeric G protein knock-out mutants have no phenotypic defect in chloroplast development, and the connection between the G protein signaling pathway and chloroplast development has only been inferred from pharmaceutical evidence. Thus, whether G protein signaling plays a role in chloroplast development remains an open question. Here, we present genetic evidence, using the leaf-variegated mutant thylakoid formation 1 (thf1), indicating that inactivation or activation of the endogenous G protein alpha-subunit (GPA1) affects chloroplast development, as does the ectopic expression of the constitutively active Galpha-subunit (cGPA1). Molecular biological and genetic analyses showed that FtsH complexes, which are composed of type-A (FtsH1/FtsH5) and type-B (FtsH2/FtsH8) subunits, are required for cGPA1-promoted chloroplast development in thf1. Furthermore, the ectopic expression of cGPA1 rescues the leaf variegation of ftsh2. Consistent with this finding, microarray analysis shows that ectopic expression of cGPA1 partially corrects mis-regulated gene expression in thf1. This overlooked function of G proteins provides new insight into our understanding of the integrative signaling network, which dynamically regulates chloroplast development and function in response to both intracellular and extracellular signals.


Developmental Biology | 2008

Heterotrimeric G protein α and β subunits antagonistically modulate stomatal density in Arabidopsis thaliana

Guangzhen Hu; Yuxiang Cheng; Jirong Huang

Stomata are essential for efficient gas and water-vapor exchange between the atmosphere and plants. Stomatal density and movement are controlled by a series of signal molecules including phytohormones and peptides as well as by environmental stimuli. It is known that heterotrimeric G-proteins play an important role in the ABA-inhibited stomatal opening. In this study, the G-protein signaling pathway was also found to regulate stomatal density on the lower epidermis of Arabidopsis cotyledons. The loss-of-function mutation of the G-protein alpha-subunit (GPA1) showed a reduction in stomatal density, while overexpression of the constitutively active form of GPA1(QL) increased stomatal density, indicating a positive role of the active form of GPA1 in stomatal development. In contrast, stomatal density increased in the null mutant of the G-protein beta-subunit (AGB1) but decreased in transgenic lines that overexpressed AGB1. Stomatal analysis of the gpa1 agb1 double mutants displayed an average value of stomatal density compared to the single mutants. Taken together, these results suggest that the stomatal density in Arabidopsis is modulated by GPA1 and AGB1 in an antagonistic manner.


Molecular Plant | 2013

Arabidopsis thylakoid formation 1 is a critical regulator for dynamics of PSII-LHCII complexes in leaf senescence and excess light.

Weihua Huang; Qingbo Chen; Ying Zhu; Fenghong Hu; Zhaoxue Ma; Zuhua He; Jirong Huang

In higher plants, photosystem II (PSII) is a large pigment-protein supramolecular complex composed of the PSII core complex and the plant-specific peripheral light-harvesting complexes (LHCII). PSII-LHCII complexes are highly dynamic in their quantity and macro-organization to various environmental conditions. In this study, we reported a critical factor, the Arabidopsis Thylakoid Formation 1 (THF1) protein, which controls PSII-LHCII dynamics during dark-induced senescence and light acclimation. Loss-of-function mutations in THF1 lead to a stay-green phenotype in pathogen-infected and senescent leaves. Both LHCII and PSII core subunits are retained in dark-induced senescent leaves of thf1, indicative of the presence of PSII-LHCII complexes. Blue native (BN)-polyacrylamide gel electrophoresis (PAGE) and immunoblot analysis showed that, in dark- and high-light-treated thf1 leaves, a type of PSII-LHCII megacomplex is selectively retained while the stability of PSII-LHCII supercomplexes significantly decreased, suggesting a dual role of THF1 in dynamics of PSII-LHCII complexes. We showed further that THF1 interacts with Lhcb proteins in a pH-dependent manner and that the stay-green phenotype of thf1 relies on the presence of LHCII complexes. Taken together, the data suggest that THF1 is required for dynamics of PSII-LHCII supramolecular organization in higher plants.


Cell Research | 2008

Heterotrimeric G-protein is involved in phytochrome A-mediated cell death of Arabidopsis hypocotyls

Qing Wei; Wenbin Zhou; Guangzhen Hu; Jiamian Wei; Hongquan Yang; Jirong Huang

The heterotrimeric guanine nucleotide-binding protein (G-protein) has been demonstrated to mediate various signaling pathways in plants. However, its role in phytochrome A (phyA) signaling remains elusive. In this study, we discover a new phyA-mediated phenotype designated far-red irradiation (FR) preconditioned cell death, which occurs only in the hypocotyls of FR-grown seedlings following exposure to white light (WL). The cell death is mitigated in the Gα mutant gpa1 but aggravated in the Gβ mutant agb1 in comparison with the wild type (WT), indicative of antagonistic roles of GPA1 and AGB1 in the phyA-mediated cell-death pathway. Further investigation indicates that FR-induced accumulation of nonphotoconvertible protochlorophyllide (Pchlide633), which generates reactive oxygen species (ROS) on exposure to WL, is required for FR-preconditioned cell death. Moreover, ROS is mainly detected in chloroplasts using the fluorescent probe. Interestingly, the application of H2O2 to dark-grown seedlings results in a phenotype similar to FR-preconditioned cell death. This reveals that ROS is a critical mediator for the cell death. In addition, we observe that agb1 is more sensitive to H2O2 than WT seedlings, indicating that the G-protein may also modify the sensitivity of the seedlings to ROS stress. Taking these results together, we infer that the G-protein may be involved in the phyA signaling pathway to regulate FR-preconditioned cell death of Arabidopsis hypocotyls. A possible mechanism underlying the involvement of the G-protein in phyA signaling is discussed in this study.


Molecular BioSystems | 2011

Combinatorial use of offline SCX and online RP–RP liquid chromatography for iTRAQ-based quantitative proteomics applications

Edward Lau; Maggie P. Y. Lam; S. O. Siu; Ricky P. W. Kong; Wai Lung Chan; Zhongjun Zhou; Jirong Huang; Clive Lo; Ivan K. Chu

Extensive front-end separation is usually required for complex samples in bottom-up proteomics to alleviate the problem of peptide undersampling. Isobaric Tags for Relative and Absolute Quantification (iTRAQ)-based experiments have particularly higher demands, in terms of the number of duty cycles and the sensitivity, to confidently quantify protein abundance. Strong cation exchange (SCX)/reverse phase (RP) liquid chromatography (LC) is currently used routinely to separate iTRAQ-labeled peptides because of its ability to simultaneously clean up the iTRAQ reagents and byproducts and provide first-dimension separation; nevertheless, the low resolution of SCX means that peptides can be redundantly sampled across fractions, leading to loss of usable duty cycles. In this study, we explored the combinatorial application of offline SCX fractionation with online RP-RP applied to iTRAQ-labeled chloroplast proteins to evaluate the effect of three-dimensional LC separation on the overall performance of the quantitative proteomics experiment. We found that the higher resolution of RP-RP can be harnessed to complement SCX-RP and increase the quality of protein identification and quantification, without significantly impacting instrument time and reproducibility.


Plant Journal | 2013

Proteomic evidence for genetic epistasis: ClpR4 mutations switch leaf variegation to virescence in Arabidopsis

Wenjuan Wu; Ying Zhu; Zhaoxue Ma; Yi Sun; Quan Quan; Peng Li; Pengzhan Hu; Tieliu Shi; Clive Lo; Ivan K. Chu; Jirong Huang

Chloroplast development in plants is regulated by a series of coordinated biological processes. In this work, a genetic suppressor screen for the leaf variegation phenotype of the thylakoid formation 1 (thf1) mutant combined with a proteomic assay was employed to elucidate this complicated network. We identified a mutation in ClpR4, named clpR4-3, which leads to leaf virescence and also rescues the var2 variegation. Proteomic analysis showed that the chloroplast proteome of clpR4-3 thf1 is dominantly controlled by clpR4-3, providing molecular mechanisms that cause genetic epistasis of clpR4-3 to thf1. Classification of the proteins significantly mis-regulated in the mutants revealed that those functioning in the expression of plastid genes are oppositely regulated while proteins functioning in antioxidative stress, protein folding, and starch metabolism are changed in the same direction between thf1 and clpR4-3. The levels of FtsHs including FtsH2/VAR2, FtsH8, and FtsH5/VAR1 are greatly reduced in thf1 compared with those in the wild type, but are higher in clpR4-3 thf1 than in thf1. Quantitative PCR analysis revealed that FtsH expression in clpR4-3 thf1 is regulated post-transcriptionally. In addition, a number of ribosomal proteins are less expressed in the clpR4-3 proteome, which is in line with the reduced levels of rRNAs in clpR4-3. Furthermore, knocking out PRPL11, one of the most downregulated proteins in the clpR4-3 thf1 proteome, rescues the leaf variegation phenotype of the thf1 and var2 mutants. These results provide insights into molecular mechanisms by which the virescent clpR4-3 mutation suppresses leaf variegation of thf1 and var2.

Collaboration


Dive into the Jirong Huang's collaboration.

Top Co-Authors

Avatar

Wenjuan Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuxiang Cheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhaoxue Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Weihua Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ye Xie

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yi Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ying Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guangzhen Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wenbin Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge