Jirun Sun
National Institute of Standards and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jirun Sun.
Dental Materials | 2009
Jirun Sun; Naomi Eidelman; Sheng Lin-Gibson
OBJECTIVES The objectives of this study were to (1) demonstrate X-ray micro-computed tomography (microCT) as a viable method for determining the polymerization shrinkage and microleakage on the same sample accurately and non-destructively, and (2) investigate the effect of sample geometry (e.g., C-factor and volume) on polymerization shrinkage and microleakage. METHODS Composites placed in a series of model cavities of controlled C-factors and volumes were imaged using microCT to determine their precise location and volume before and after photopolymerization. Shrinkage was calculated by comparing the volume of composites before and after polymerization and leakage was predicted based on gap formation between composites and cavity walls as a function of position. Dye penetration experiments were used to validate microCT results. RESULTS The degree of conversion (DC) of composites measured using FTIR microspectroscopy in reflectance mode was nearly identical for composites filled in all model cavity geometries. The shrinkage of composites calculated based on microCT results was statistically identical regardless of sample geometry. Microleakage, on the other hand, was highly dependent on the C-factor as well as the composite volume, with higher C-factors and larger volumes leading to a greater probability of microleakage. Spatial distribution of microleakage determined by microCT agreed well with results determined by dye penetration. SIGNIFICANCE microCT has proven to be a powerful technique in quantifying polymerization shrinkage and corresponding microleakage for clinically relevant cavity geometries.
Dental Materials | 2009
Diana N. Zeiger; Jirun Sun; Gary E. Schumacher; Sheng Lin-Gibson
OBJECTIVE Use X-ray microcomputed tomography (microCT), to test the hypothesis that composite shrinkage and sites of potential leakage in human teeth are non-uniformly distributed and depend on cavity geometry and C-factor. METHODS Two holes of equal volume but different dimensions were drilled into the exposed dentin of extracted human molars. The cavities were filled with composite and teeth were scanned, before and after curing, using microCT. Three-dimensional (3D) reconstructions of the data were prepared and analyzed using image analysis software. RESULTS 3D reconstructions showed that cavity geometry did not affect the polymerization shrinkage. The shrinkage for all restorations was 2.66+/-0.59%, and cavity dimensions did not affect the volume lost, either in quantity or location on the sample. Potential leakage sites were identified by gap formations and found to be non-uniformly distributed along the tooth-composite interface. Leakage in regions calculated by microCT was confirmed by visualization of sectioned samples with confocal laser scanning microscopy. SIGNIFICANCE microCT evaluation will add tremendous value as part of a suite of tests to characterize various properties of dental materials. The non-uniform distribution of potential leakage sites about the cavities that was determined by microCT emphasizes the inadequacy of traditional methods of determining leakage, which are capable of analyzing only limited areas. Additionally, microCT evaluation can produce quantitative analyses of shrinkage and leakage, compared to the conventional methods, which are qualitative or semi-quantitative. Finally, experimentally determined shrinkage and leakage of composite in extracted teeth agrees with the results of similar experiments in model cavities, confirming the validity of those models.
Advanced Materials | 2011
Yifu Ding; Jirun Sun; Hyun Wook Ro; Zhen Wang; Jing Zhou; Nancy J. Lin; Marcus T. Cicerone; Christopher L. Soles; Sheng Lin-Gibson
H /H o Surface topography is an important environmental cue for controlling cellular responses such as morphology, adhesion, alignment, migration, and gene expression. [ 1–7 ] Surface topographies with feature sizes covering the range of cell and cell components, i.e., from a few nanometers to tens of micrometers, have been broadly investigated with respect to effects on cell contact guidance (CG). [ 2 , 8 ] Despite the signifi cant work done to date, there has not been a satisfactory general explanation for the phenomenon, although many hypothesize that it is related to a biological response. In this paper, we fabricate a platform with precisely controlled surface topography, and use it to perform systematic cell studies that lead us to a new mechanistic understanding of CG under these conditions, which indicates that the response is rapid and largely physical rather than biological in nature. Below, we describe a two-step approach to fabricate submicrometer polymer gratings with continuous variations in grating height ( H ). First, large-area uniform gratings consisting of equally spaced lines were generated via nanoimprint lithography [ 9 , 10 ] on polystyrene (PS) and polymethylmethacrylate (PMMA). For each polymer, two sets of gratings were created with one-to-one line-to-space ratios, each with a pitch ( Λ ) of approximately 420 and 800 nm. Next, the uniformly patterned area was transformed to a continuous gradient in height by annealing on a thermal gradient stage for a fi xed time (see Supporting Information for details). A sketch of an annealed pattern with a height gradient is shown in the inset of Figure 1 . As indicated, the direction of the gradient is parallel to that of the polymer lines. Figure 1 shows position-dependent grating heights for two PS gratings ( Λ = 420 and 800 nm). The grating heights were characterized by atomic force microscopy (AFM) and are normalized in Figure 1 by the maximum height, H 0 , at x = 0.
Biomacromolecules | 2010
Jirun Sun; Yifu Ding; Nancy J. Lin; Jing Zhou; Hyunwook Ro; Christopher L. Soles; Marcus T. Cicerone; Sheng Lin-Gibson
Nanoscale surface features that mimic extracellular matrix are critical environmental cues for cell contact guidance and are vital in advanced medical devices in order to manipulate cell behaviors. Among them, nanogratings (line-and-space gratings) are common platforms to study geometric effects on cell contact guidance, especially cell alignment, but generally are one pattern height per platform. In this study, we developed a strategy to fabricate controlled substrates with a wide range of pattern shapes and surface chemistries and to separate surface chemistry and topography effects. As a demonstration of this strategy, six nanograting platforms on three materials were fabricated and applied to examine and differentiate the effects of surface topography and surface chemistry on cell contact guidance of murine preosteoblasts. All of the six platforms contained the same gradient in pattern height (0 to ≈350 nm). They were prepared using nanoimprint lithography and annealing for thermoplastic materials (low molecular weight polystyrene (PS) and polymethylmethacrylate (PMMA)) and photoimprint for a thermoset material (a cross-linked dimethacrylate (DMA)). Each material contains two platforms that are only different in line-and-space pitch (420 or 800 nm). The DMA nanogratings had a reverse line-and-space profile to those of the PS and PMMA nanogratings. Using these platforms, a full range of cell alignment, from randomly orientated to completely parallel to the grating direction was achieved. Results from focal adhesion assays and scanning electronic microscopy indicated a change in cell-substrate contact from a noncomposite state (full contact) to a composite state (partial contact between cell and substrate) as pattern height increased. These gradient platforms allowed for the separation of surface chemistry and surface topography to provide insight into the mechanisms responsible for cell contact guidance on nanopatterned surfaces.
Arthritis Research & Therapy | 2009
Naomi Eidelman; A. Boyde; A. J. Bushby; Peter Gt Howell; Jirun Sun; Dale E. Newbury; Frederick W. Miller; Pamela Gehron Robey; Lisa G. Rider
IntroductionCalcified deposits (CDs) in skin and muscles are common in juvenile dermatomyositis (DM), and less frequent in adult DM. Limited information exists about the microstructure and composition of these deposits, and no information is available on their elemental composition and contents, mineral density (MD) and stiffness. We determined the microstructure, chemical composition, MD and stiffness of CDs obtained from DM patients.MethodsSurgically-removed calcinosis specimens were analyzed with fourier transform infrared microspectroscopy in reflectance mode (FTIR-RM) to map their spatial distribution and composition, and with scanning electron microscopy/silicon drift detector energy dispersive X-ray spectrometry (SEM/SDD-EDS) to obtain elemental maps. X-ray diffraction (XRD) identified their mineral structure, X-ray micro-computed tomography (μCT) mapped their internal structure and 3D distribution, quantitative backscattered electron (qBSE) imaging assessed their morphology and MD, nanoindentation measured their stiffness, and polarized light microscopy (PLM) evaluated the organic matrix composition.ResultsSome specimens were composed of continuous carbonate apatite containing small amounts of proteins with a mineral to protein ratio much higher than in bone, and other specimens contained scattered agglomerates of various sizes with similar composition (FTIR-RM). Continuous or fragmented mineralization was present across the entire specimens (μCT). The apatite was much more crystallized than bone and dentin, and closer to enamel (XRD) and its calcium/phophorous ratios were close to stoichiometric hydroxyapatite (SEM/SDD-EDS). The deposits also contained magnesium and sodium (SEM/SDD-EDS). The MD (qBSE) was closer to enamel than bone and dentin, as was the stiffness (nanoindentation) in the larger dense patches. Large mineralized areas were typically devoid of collagen; however, collagen was noted in some regions within the mineral or margins (PLM). qBSE, FTIR-RM and SEM/SDD-EDS maps suggest that the mineral is deposited first in a fragmented pattern followed by a wave of mineralization that incorporates these particles. Calcinosis masses with shorter duration appeared to have islands of mineralization, whereas longstanding deposits were solidly mineralized.ConclusionsThe properties of the mineral present in the calcinosis masses are closest to that of enamel, while clearly differing from bone. Calcium and phosphate, normally present in affected tissues, may have precipitated as carbonate apatite due to local loss of mineralization inhibitors.
Biomaterials | 2009
Jirun Sun; Rui Fang; Nancy J. Lin; Naomi Eidelman; Sheng Lin-Gibson
Current methods to determine debonding/leakage at the tooth-composite interface are qualitative or semi-quantitative. Our previous work introduced a 3D imaging technique to determine and visualize leakage and its distribution at the interface of cavity wall and composite restoration in model cavities. In this study, an automated program was developed to quantify leakage in terms of area and volume. 3D leakage distribution obtained via the image analysis program was shown to have excellent agreement with leakage visualized by dye penetration. The relationship between leakage and various material performance parameters including processability, shrinkage, stress, and shrinkage strain-rate was determined using a series of experimental composites containing different filler contents. Results indicate that the magnitude of leakage correlated well with polymerization stress, confirming the validity of the common approach utilizing polymerization stress to predict bonding durability. 3D imaging and image analysis provide insight to help understand the relations between leakage and material properties.
ACS Applied Materials & Interfaces | 2018
Yin Yang; Vytas Reipa; Guo Liu; Yuan Meng; Xiaohong Wang; Kenneth P. Mineart; Vivek M. Prabhu; Wenyuan Shi; Nancy J. Lin; Xuesong He; Jirun Sun
Stimuli-responsive compounds that provide on-site, controlled antimicrobial activity promise an effective approach to prevent infections, reducing the need for systemic antibiotics. We present a novel pH-sensitive quaternary pyridinium salt (QPS), whose antibacterial activity is boosted by low pH and controlled by adjusting the pH between 4 and 8. Particularly, this compound selectively inhibits growth of acid-producing bacteria within a multispecies community. The successful antibacterial action of this QPS maintains the environmental pH above 5.5, a threshold pH, below which demineralization/erosion takes place. The design, synthesis, and characterization of this QPS and its short-chain analogue are discussed. In addition, their pH-sensitive physicochemical properties in aqueous and organic solutions are evaluated by UV-vis spectroscopy, dynamic light scattering, and NMR spectroscopy. Furthermore, the mechanism of action reveals a switchable assembly that is triggered by acid-base interaction and formed by tightly stacked π-conjugated systems and base moieties. Finally, a model is proposed to recognize the correlated but different mechanisms of pH sensitivity and acid-induced, pH-controlled antibacterial efficacy. We anticipate that successful application of these QPSs and their derivatives will provide protections against infection and erosion through targeted treatments to acid-producing bacteria and modulation of environmental pH.
Science | 2010
Yifu Ding; Jirun Sun; Hyun Wook Ro; Zhen Wang; Jing N. Zhou; Nancy J. Lin; Sheng Lin-Gibson; Marcus T. Cicerone; Christopher L. Soles
Biomaterials Forum | 2010
Nancy J. Lin; Sheng Lin-Gibson; Jirun Sun; Yifu Ding
Biomaterials | 2010
Sheng Lin-Gibson; Jirun Sun; Nancy J. Lin; Jing N. Zhou; Hyun Wook Ro; Christopher L. Soles; Marcus T. Cicerone; Yifu Ding