Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jishou Ruan is active.

Publication


Featured researches published by Jishou Ruan.


Journal of Computational Chemistry | 2008

Prediction of protein structural class using novel evolutionary collocation-based sequence representation.

Ke Chen; Lukasz Kurgan; Jishou Ruan

Knowledge of structural classes is useful in understanding of folding patterns in proteins. Although existing structural class prediction methods applied virtually all state‐of‐the‐art classifiers, many of them use a relatively simple protein sequence representation that often includes amino acid (AA) composition. To this end, we propose a novel sequence representation that incorporates evolutionary information encoded using PSI‐BLAST profile‐based collocation of AA pairs. We used six benchmark datasets and five representative classifiers to quantify and compare the quality of the structural class prediction with the proposed representation. The best, classifier support vector machine achieved 61–96% accuracy on the six datasets. These predictions were comprehensively compared with a wide range of recently proposed methods for prediction of structural classes. Our comprehensive comparison shows superiority of the proposed representation, which results in error rate reductions that range between 14% and 26% when compared with predictions of the best‐performing, previously published classifiers on the considered datasets. The study also shows that, for the benchmark dataset that includes sequences characterized by low identity (i.e., 25%, 30%, and 40%), the prediction accuracies are 20–35% lower than for the other three datasets that include sequences with a higher degree of similarity. In conclusion, the proposed representation is shown to substantially improve the accuracy of the structural class prediction. A web server that implements the presented prediction method is freely available at http://biomine.ece.ualberta.ca/Structural_Class/SCEC.html.


Proteins | 2009

On the relation between residue flexibility and local solvent accessibility in proteins

Hua Zhang; Tuo Zhang; Ke Chen; Shiyi Shen; Jishou Ruan; Lukasz Kurgan

We investigate the relationship between the flexibility, expressed with B‐factor, and the relative solvent accessibility (RSA) in the context of local, with respect to the sequence, neighborhood and related concepts such as residue depth. We observe that the flexibility of a given residue is strongly influenced by the solvent accessibility of the adjacent neighbors. The mean normalized B‐factor of the exposed residues with two buried neighbors is smaller than that of the buried residues with two exposed neighbors. Inclusion of RSA of the neighboring residues (local RSA) significantly increases correlation with the B‐factor. Correlation between the local RSA and B‐factor is shown to be stronger than the correlation that considers local distance‐ or volume‐based residue depth. We also found that the correlation coefficients between B‐factor and RSA for the 20 amino acids, called flexibility‐exposure correlation index, are strongly correlated with the stability scale that characterizes the average contributions of each amino acid to the folding stability. Our results reveal that the predicted RSA could be used to distinguish between the disordered and ordered residues and that the inclusion of local predicted RSA values helps providing a better contrast between these two types of residues. Prediction models developed based on local actual RSA and local predicted RSA show similar or better results in the context of B‐factor and disorder predictions when compared with several existing approaches. We validate our models using three case studies, which show that this work provides useful clues for deciphering the structure–flexibility–function relation. Proteins 2009.


Bioinformatics | 2008

Accurate sequence-based prediction of catalytic residues

Tuo Zhang; Hua Zhang; Ke Chen; Shiyi Shen; Jishou Ruan; Lukasz Kurgan

MOTIVATION Prediction of catalytic residues provides useful information for the research on function of enzymes. Most of the existing prediction methods are based on structural information, which limits their use. We propose a sequence-based catalytic residue predictor that provides predictions with quality comparable to modern structure-based methods and that exceeds quality of state-of-the-art sequence-based methods. RESULTS Our method (CRpred) uses sequence-based features and the sequence-derived PSI-BLAST profile. We used feature selection to reduce the dimensionality of the input (and explain the input) to support vector machine (SVM) classifier that provides predictions. Tests on eight datasets and side-by-side comparison with six modern structure- and sequence-based predictors show that CRpred provides predictions with quality comparable to current structure-based methods and better than sequence-based methods. The proposed method obtains 15-19% precision and 48-58% TP (true positive) rate, depending on the dataset used. CRpred also provides confidence values that allow selecting a subset of predictions with higher precision. The improved quality is due to newly designed features and careful parameterization of the SVM. The features incorporate amino acids characterized by the highest and the lowest propensities to constitute catalytic residues, Gly that provides flexibility for catalytic sites and sequence motifs characteristic to certain catalytic reactions. Our features indicate that catalytic residues are on average more conserved when compared with the general population of residues and that highly conserved amino acids characterized by high catalytic propensity are likely to form catalytic sites. We also show that local (with respect to the sequence) hydrophobicity contributes towards the prediction.


BMC Structural Biology | 2007

Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs

Ke Chen; Lukasz Kurgan; Jishou Ruan

BackgroundTraditionally, it is believed that the native structure of a protein corresponds to a global minimum of its free energy. However, with the growing number of known tertiary (3D) protein structures, researchers have discovered that some proteins can alter their structures in response to a change in their surroundings or with the help of other proteins or ligands. Such structural shifts play a crucial role with respect to the protein function. To this end, we propose a machine learning method for the prediction of the flexible/rigid regions of proteins (referred to as FlexRP); the method is based on a novel sequence representation and feature selection. Knowledge of the flexible/rigid regions may provide insights into the protein folding process and the 3D structure prediction.ResultsThe flexible/rigid regions were defined based on a dataset, which includes protein sequences that have multiple experimental structures, and which was previously used to study the structural conservation of proteins. Sequences drawn from this dataset were represented based on feature sets that were proposed in prior research, such as PSI-BLAST profiles, composition vector and binary sequence encoding, and a newly proposed representation based on frequencies of k-spaced amino acid pairs. These representations were processed by feature selection to reduce the dimensionality. Several machine learning methods for the prediction of flexible/rigid regions and two recently proposed methods for the prediction of conformational changes and unstructured regions were compared with the proposed method. The FlexRP method, which applies Logistic Regression and collocation-based representation with 95 features, obtained 79.5% accuracy. The two runner-up methods, which apply the same sequence representation and Support Vector Machines (SVM) and Naïve Bayes classifiers, obtained 79.2% and 78.4% accuracy, respectively. The remaining considered methods are characterized by accuracies below 70%. Finally, the Naïve Bayes method is shown to provide the highest sensitivity for the prediction of flexible regions, while FlexRP and SVM give the highest sensitivity for rigid regions.ConclusionA new sequence representation that uses k-spaced amino acid pairs is shown to be the most efficient in the prediction of the flexible/rigid regions of protein sequences. The proposed FlexRP method provides the highest prediction accuracy of about 80%. The experimental tests show that the FlexRP and SVM methods achieved high overall accuracy and the highest sensitivity for rigid regions, while the best quality of the predictions for flexible regions is achieved by the Naïve Bayes method.


Amino Acids | 2008

Secondary structure-based assignment of the protein structural classes

Lukasz Kurgan; Tuo Zhang; Hua Zhang; Shiyi Shen; Jishou Ruan

Structural class categorizes proteins based on the amount and arrangement of the constituent secondary structures. The knowledge of structural classes is applied in numerous important predictive tasks that address structural and functional features of proteins. We propose novel structural class assignment methods that use one-dimensional (1D) secondary structure as the input. The methods are designed based on a large set of low-identity sequences for which secondary structure is predicted from their sequence (PSSAsc model) or assigned based on their tertiary structure (SSAsc). The secondary structure is encoded using a comprehensive set of features describing count, content, and size of secondary structure segments, which are fed into a small decision tree that uses ten features to perform the assignment. The proposed models were compared against seven secondary structure-based and ten sequence-based structural class predictors. Using the 1D secondary structure, SSAsc and PSSAsc can assign proteins to the four main structural classes, while the existing secondary structure-based assignment methods can predict only three classes. Empirical evaluation shows that the proposed models are quite promising. Using the structure-based assignment performed in SCOP (structural classification of proteins) as the golden standard, the accuracy of SSAsc and PSSAsc equals 76 and 75%, respectively. We show that the use of the secondary structure predicted from the sequence as an input does not have a detrimental effect on the quality of structural class assignment when compared with using secondary structure derived from tertiary structure. Therefore, PSSAsc can be used to perform the automated assignment of structural classes based on the sequences.


PLOS ONE | 2012

BEST: Improved Prediction of B-Cell Epitopes from Antigen Sequences

Jianzhao Gao; Eshel Faraggi; Yaoqi Zhou; Jishou Ruan; Lukasz Kurgan

Accurate identification of immunogenic regions in a given antigen chain is a difficult and actively pursued problem. Although accurate predictors for T-cell epitopes are already in place, the prediction of the B-cell epitopes requires further research. We overview the available approaches for the prediction of B-cell epitopes and propose a novel and accurate sequence-based solution. Our BEST (B-cell Epitope prediction using Support vector machine Tool) method predicts epitopes from antigen sequences, in contrast to some method that predict only from short sequence fragments, using a new architecture based on averaging selected scores generated from sliding 20-mers by a Support Vector Machine (SVM). The SVM predictor utilizes a comprehensive and custom designed set of inputs generated by combining information derived from the chain, sequence conservation, similarity to known (training) epitopes, and predicted secondary structure and relative solvent accessibility. Empirical evaluation on benchmark datasets demonstrates that BEST outperforms several modern sequence-based B-cell epitope predictors including ABCPred, method by Chen et al. (2007), BCPred, COBEpro, BayesB, and CBTOPE, when considering the predictions from antigen chains and from the chain fragments. Our method obtains a cross-validated area under the receiver operating characteristic curve (AUC) for the fragment-based prediction at 0.81 and 0.85, depending on the dataset. The AUCs of BEST on the benchmark sets of full antigen chains equal 0.57 and 0.6, which is significantly and slightly better than the next best method we tested. We also present case studies to contrast the propensity profiles generated by BEST and several other methods.


Current Protein & Peptide Science | 2010

Analysis and Prediction of RNA-Binding Residues Using Sequence, Evolutionary Conservation, and Predicted Secondary Structure and Solvent Accessibility

Tuo Zhang; Hua Zhang; Ke Chen; Jishou Ruan; Shiyi Shen; Lukasz Kurgan

Identification and prediction of RNA-binding residues (RBRs) provides valuable insights into the mechanisms of protein-RNA interactions. We analyzed the contributions of a wide range of factors including amino acid sequence, evolutionary conservation, secondary structure and solvent accessibility, to the prediction/characterization of RBRs. Five feature sets were designed and feature selection was performed to find and investigate relevant features. We demonstrate that (1) interactions with positively charged amino acids Arg and Lys are preferred by the egatively charged nucleotides; (2) Gly provides flexibility for the RNA binding sites; (3) Glu with negatively charged side chain and several hydrophobic residues such as Leu, Val, Ala and Phe are disfavored in the RNA-binding sites; (4) coil residues, especially in long segments, are more flexible (than other secondary structures) and more likely to interact with RNA; (5) helical residues are more rigid and consequently they are less likely to bind RNA; and (6) residues partially exposed to the solvent are more likely to form RNA-binding sites. We introduce a novel sequence-based predictor of RBRs, RBRpred, which utilizes the selected features. RBRpred is comprehensively tested on three datasets with varied atom distance cutoffs by performing both five-fold cross validation and jackknife tests and achieves Matthews correlation coefficient (MCC) of 0.51, 0.48 and 0.42, respectively. The quality is comparable to or better than that for state-of-the-art predictors that apply the distancebased cutoff definition. We show that the most important factor for RBRs prediction is evolutionary conservation, followed by the amino acid sequence, predicted secondary structure and predicted solvent accessibility. We also investigate the impact of using native vs. predicted secondary structure and solvent accessibility. The predictions are sufficient for the RBR prediction and the knowledge of the actual solvent accessibility helps in predictions for lower distance cutoffs.


BMC Bioinformatics | 2008

Sequence based residue depth prediction using evolutionary information and predicted secondary structure

Hua Zhang; Tuo Zhang; Ke Chen; Shiyi Shen; Jishou Ruan; Lukasz Kurgan

BackgroundResidue depth allows determining how deeply a given residue is buried, in contrast to the solvent accessibility that differentiates between buried and solvent-exposed residues. When compared with the solvent accessibility, the depth allows studying deep-level structures and functional sites, and formation of the protein folding nucleus. Accurate prediction of residue depth would provide valuable information for fold recognition, prediction of functional sites, and protein design.ResultsA new method, RDPred, for the real-value depth prediction from protein sequence is proposed. RDPred combines information extracted from the sequence, PSI-BLAST scoring matrices, and secondary structure predicted with PSIPRED. Three-fold/ten-fold cross validation based tests performed on three independent, low-identity datasets show that the distance based depth (computed using MSMS) predicted by RDPred is characterized by 0.67/0.67, 0.66/0.67, and 0.64/0.65 correlation with the actual depth, by the mean absolute errors equal 0.56/0.56, 0.61/0.60, and 0.58/0.57, and by the mean relative errors equal 17.0%/16.9%, 18.2%/18.1%, and 17.7%/17.6%, respectively. The mean absolute and the mean relative errors are shown to be statistically significantly better when compared with a method recently proposed by Yuan and Wang [Proteins 2008; 70:509–516]. The results show that three-fold cross validation underestimates the variability of the prediction quality when compared with the results based on the ten-fold cross validation. We also show that the hydrophilic and flexible residues are predicted more accurately than hydrophobic and rigid residues. Similarly, the charged residues that include Lys, Glu, Asp, and Arg are the most accurately predicted. Our analysis reveals that evolutionary information encoded using PSSM is characterized by stronger correlation with the depth for hydrophilic amino acids (AAs) and aliphatic AAs when compared with hydrophobic AAs and aromatic AAs. Finally, we show that the secondary structure of coils and strands is useful in depth prediction, in contrast to helices that have relatively uniform distribution over the protein depth. Application of the predicted residue depth to prediction of buried/exposed residues shows consistent improvements in detection rates of both buried and exposed residues when compared with the competing method. Finally, we contrasted the prediction performance among distance based (MSMS and DPX) and volume based (SADIC) depth definitions. We found that the distance based indices are harder to predict due to the more complex nature of the corresponding depth profiles.ConclusionThe proposed method, RDPred, provides statistically significantly better predictions of residue depth when compared with the competing method. The predicted depth can be used to provide improved prediction of both buried and exposed residues. The prediction of exposed residues has implications in characterization/prediction of interactions with ligands and other proteins, while the prediction of buried residues could be used in the context of folding predictions and simulations.


Artificial Intelligence in Medicine | 2005

Highly accurate and consistent method for prediction of helix and strand content from primary protein sequences

Jishou Ruan; Kui Wang; Jie Yang; Lukasz Kurgan; Krzysztof J. Cios

OBJECTIVE One of interesting computational topics in bioinformatics is prediction of secondary structure of proteins. Over 30 years of research has been devoted to the topic but we are still far away from having reliable prediction methods. A critical piece of information for accurate prediction of secondary structure is the helix and strand content of a given protein sequence. Ability to accurately predict content of those two secondary structures has a good potential to improve accuracy of prediction of the secondary structure. Most of the existing methods use composition vector to predict the content. Their underlying assumption is that the vector can be used to provide functional mapping between primary sequence and helix/strand content. While this is true for small sets of proteins we show that for larger protein sets such mapping are inconsistent, i.e. the same composition vectors correspond to different contents. To this end, we propose a method for prediction of helix/strand content from primary protein sequences that is fundamentally different from currently available methods. METHODS AND MATERIAL Our method is accurate and uses a novel approach to obtain information from primary sequence based on a composition moment vector, which is a measure that includes information about both composition of a given primary sequence and the position of amino acids in the sequence. In contrast to the composition vector, we show that it provides functional mapping between primary sequence and the helix/strand content. RESULTS A set of benchmarks involving a large protein dataset consisting of over 11,000 protein sequences from Protein Data Bank was performed to validate the method. Prediction done by a neural network had average accuracy of 91.5% for the helix and 94.5% for the strand contents. We also show that using the new measure results in about 40% reduction of error rates when compared with the composition vector results. CONCLUSIONS The developed method has much better accuracy when compared with other existing methods, as shown on a large body of proteins, in contrast to other reported results that often target small sets of specific protein types, such as globular proteins.


Proteins | 2007

Prediction of protein secondary structure content for the twilight zone sequences.

Leila Homaeian; Lukasz Kurgan; Jishou Ruan; Krzysztof J. Cios; Ke Chen

Secondary protein structure carries information about local structural arrangements, which include three major conformations: α‐helices, β‐strands, and coils. Significant majority of successful methods for prediction of the secondary structure is based on multiple sequence alignment. However, multiple alignment fails to provide accurate results when a sequence comes from the twilight zone, that is, it is characterized by low (<30%) homology. To this end, we propose a novel method for prediction of secondary structure content through comprehensive sequence representation, called PSSC‐core. The method uses a multiple linear regression model and introduces a comprehensive feature‐based sequence representation to predict amount of helices and strands for sequences from the twilight zone. The PSSC‐core method was tested and compared with two other state‐of‐the‐art prediction methods on a set of 2187 twilight zone sequences. The results indicate that our method provides better predictions for both helix and strand content. The PSSC‐core is shown to provide statistically significantly betterresults when compared with the competing methods, reducing the prediction error by 5–7% for helix and 7–9% for strand content predictions. The proposed feature‐based sequence representation uses a comprehensive set of physicochemical properties that are custom‐designed for each of the helix and strand content predictions. It includes composition and composition moment vectors, frequency of tetra‐peptides associated with helical and strand conformations, various property‐based groups like exchange groups, chemical groups of the side chains and hydrophobic group, auto‐correlations based on hydrophobicity, side‐chain masses, hydropathy, and conformational patterns for β‐sheets. The PSSC‐core method provides an alternative for predicting the secondary structure content that can be used to validate and constrain results of other structure prediction methods. At the same time, it also provides useful insight into design of successful protein sequence representations that can be used in developing new methods related to prediction of different aspects of the secondary protein structure. Proteins 2007.

Collaboration


Dive into the Jishou Ruan's collaboration.

Top Co-Authors

Avatar

Lukasz Kurgan

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ke Chen

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Zhang

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge