Jisoo Hong
University of South Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jisoo Hong.
Applied Optics | 2011
Jisoo Hong; Young-Min Kim; Heejin Choi; Joonku Hahn; Jae-Hyeung Park; Hwi Kim; Sung-Wook Min; Ni Chen; Byoungho Lee
Recent trends in three-dimensional (3D) display technologies are very interesting in that both old-fashioned and up-to-date technologies are being actively investigated together. The release of the first commercially successful 3D display product raised new research topics in stereoscopic display. Autostereoscopic display renders a ray field of a 3D image, whereas holography replicates a wave field of it. Many investigations have been conducted on the next candidates for commercial products to resolve existing limitations. Up-to-date see-through 3D display is a concept close to the ultimate goal of presenting seamless virtual images. Although it is still far from practical use, many efforts have been made to resolve issues such as occlusion problems.
Journal of Experimental & Clinical Cancer Research | 2009
Kyoung-Ok Hong; Ji‐Hong Kim; Jisoo Hong; Hye-Jung Yoon; Jae-Il Lee; Sam-Pyo Hong; Seong-Doo Hong
BackgroundThe Akt/PKB family of kinases is frequently activated in human cancers, including oral squamous cell carcinoma (OSCC). Akt-induced epithelial-to-mesenchymal transition (EMT) involves downregulation of E-cadherin, which appears to result from upregulation of the transcription repressor Snail. Recently, it was proposed that carcinoma cells, especially in metastatic sites, could acquire the mesenchymal-to-epithelial reverting transition (MErT) in order to adapt the microenvironments and re-expression of E-cadherin be a critical indicator of MErT. However, the precise mechanism and biologic or clinical importance of the MErT in cancers have been little known. This study aimed to investigate whether Akt inhibition would restore the expression of E-cadherin and β-catenin, reduce that of Vimentin, and induce the MErT in OSCC cells with low or negative expression of E-cadherin. We also investigate whether inhibition of Akt activity would affect the E-cadherin repressors and signaling molecules like NF-κB, ERK, and p38.MethodsWe screened several OSCC cell lines in order to select suitable cell line models for inducing MErT, using immunoblotting and methylation specific-PCR. We examined whether Akt inhibitor phosphatidylinositol ether lipid analogues (PIA) treatment would restore the expression of E-cadherin and β-catenin, reduce that of Vimentin, and induce the MErT in KB and KOSCC-25B cells using RT-PCR, immunoblotting, immunofluorescence analysis, and in vitro migration assay. We also investigated whether inhibition of Akt activity would affect the E-cadherin repressors, including Snail, Twist, and SIP-1/ZEB-2 and signaling molecules like NF-κB, ERK, JNK, and p38 using RT-PCR, immunoblotting, and immunofluorescence analysis.ResultsOf the 7 OSCC cell lines, KB and KOSCC-25B showed constitutively activated phosphorylated Akt and low or negative expression of E-cadherin. Inhibition of Akt activity by PIA decreased NF-κB signaling, but did not affect phosphorylation of ERK, JNK, and p38 in KB and KOSCC-25B cells. Akt inhibition led to downregulation of Snail and Twist expression. In contrast, inhibition of Akt activity by PIA did not induce any changes in SIP-1/ZEB-2 expression. PIA treatment induced the expression of E-cadherin and β-catenin, reduce that of Vimentin, restored their epithelial morphology of a polygonal shape, and reduced tumor cell migration in KB and KOSCC-25B cells, which was the corresponding feature of MErT.ConclusionAll of these findings suggest that Akt inhibition could induce the MErT through decreased NF-κB signaling and downregulation of Snail and Twist in OSCC cells. A strategy involving Akt inhibition might be a useful therapeutic tool in controlling cancer dissemination and metastasis in oral cancer patients.
Optics Letters | 2004
Jae-Hyeung Park; Hak-Rin Kim; Yunhee Kim; Joohwan Kim; Jisoo Hong; Sin-Doo Lee; Byoungho Lee
A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.
Optics Letters | 2014
Keehoon Hong; Jiwoon Yeom; Changwon Jang; Jisoo Hong; Byoungho Lee
A novel system of optical see-through augmented reality (AR) is proposed by making use of a holographic optical element (HOE) with full-color and lens-array functions. The full-color lens-array HOE provides see-through property with three-dimensional (3D) virtual images, for it functions as a conventional lens array only for Bragg-matched lights. An HOE recording setup was built, and it recorded a 30 mm × 60 mm sized full-color lens-array HOE by using the techniques of spatial multiplexing for large-area recording and wavelength multiplexing for full-color imaging. The experimental results confirm that the suggested full-color lens-array HOE can provide the full-color 3D virtual images in the optical see-through AR system.
Optical Engineering | 2014
Xiao Yu; Jisoo Hong; Changgeng Liu; Myung K. Kim
Abstract. Digital holographic microscopy (DHM) is a potent tool to perform three-dimensional imaging and tracking. We present a review of the state-of-the-art of DHM for three-dimensional profiling and tracking with emphasis on DHM techniques, reconstruction criteria for three-dimensional profiling and tracking, and their applications in various branches of science, including biomedical microscopy, particle imaging velocimetry, micrometrology, and holographic tomography, to name but a few. First, several representative DHM configurations are summarized and brief descriptions of DHM processes are given. Then we describe and compare the reconstruction criteria to obtain three-dimensional profiles and four-dimensional trajectories of objects. Details of the simulated and experimental evidences of DHM techniques and related reconstruction algorithms on particles, biological cells, fibers, etc., with different shapes, sizes, and conditions are also provided. The review concludes with a summary of techniques and applications of three-dimensional imaging and four-dimensional tracking by DHM.
Optics Letters | 2013
Jisoo Hong; Myung K. Kim
We propose a single-shot incoherent holographic imaging technique that adopts self-interference incoherent digital holography (SIDH) with slight tilt of the plane mirror in the optical configuration. The limited temporal coherence length of the illumination leads the guide-star hologram of the proposed system to have a Gaussian envelope of elliptical ring shape. The observation shows that the reconstruction by cross correlation with the guide-star hologram achieves better quality than the usual propagation methods. Experimentally, we verify that the hologram and 3D reconstruction can be implemented incoherently with the proposed single-shot off-axis SIDH.
Optics Express | 2010
Jisoo Hong; Young-Min Kim; Soon-gi Park; Jong-Ho Hong; Sung-Wook Min; Sin-Doo Lee; Byoungho Lee
We propose a new method for implementing 3D/2D convertible feature in the projection-type integral imaging by using concave half mirror array. The concave half mirror array has the partially reflective characteristic to the incident light. And the reflected term is modulated by the concave mirror array structure, while the transmitted term is unaffected. With such unique characteristic, 3D/2D conversion or even the simultaneous display of 3D and 2D images is also possible. The prototype was fabricated by the aluminum coating and the polydimethylsiloxane molding process. We could experimentally verify the 3D/2D conversion and the display of 3D image on 2D background with the fabricated prototype.
Applied Optics | 2004
Sung-Wook Min; Jisoo Hong; Byoungho Lee
An optical depth converter that uses a lens array pair is analyzed theoretically and experimentally. We present a theory of depth conversion and explain the effects of the system parameters in the optical depth converter by using wave-optical analysis. Ray-optical analysis is applied to the investigation of the tendencies of the system parameter effects. We also show that the optical depth converter can be used for the three-dimensional screen in projection-type integral imaging systems.
Optics Express | 2015
Young-Min Kim; Elena Stoykova; Hoonjong Kang; Sunghee Hong; Joosup Park; Jiyong Park; Jisoo Hong
The holographic wavefront printer decodes the wavefront coming from a three-dimensional object from a computer generated hologram displayed on a spatial light modulator. By recording this wavefront as an analog volume hologram this printing method is highly suitable for realistic color 3D imaging. We propose in the paper spatial partitioning of the spatial light modulator to perform mosaic delivery of exposures at primary colors for seamless reconstruction of a white light viewable color hologram. The method is verified for a 3 × 3 color partitioning scheme by a wavefront printer with demagnification of the light beam diffracted from the modulator.
Optics Express | 2012
Young-Min Kim; Keehoon Hong; Jiwoon Yeom; Jisoo Hong; Jae-Hyun Jung; Yong Wook Lee; Jae-Hyeung Park; Byoungho Lee
In a typical auto-stereoscopic three-dimensional display, the parallax barrier or lenticular lens is located in front of the display device. However, in a projection-type auto-stereoscopic display, such optical components make it difficult to display elemental images on the screen or to reconstruct a three-dimensional image, even though a projection-type display has many advantages. Therefore, it is necessary to use a rear projection technique in a projection-type auto-stereoscopic display, despite the fact that this is an inefficient use of space. We propose here a frontal projection-type auto-stereoscopic display by using a polarizer and a quarter-wave retarding film. Since the proposed method uses a frontal projection scheme and passive polarizing components, it has the advantage of being both space saving and cost effective. This is the first report that describes a frontal projection-type auto-stereoscopic display based on a parallax barrier and integral imaging by using a projector. Experimental results that support the proposed method are provided.