Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jitao Wu is active.

Publication


Featured researches published by Jitao Wu.


Medicine | 2017

Screening the key microRNAs and transcription factors in prostate cancer based on microRNA functional synergistic relationships.

Fan Feng; Jitao Wu; Zhenli Gao; Shengqiang Yu; Yuanshan Cui

Abstract Prostate cancer (PC) is a common neoplasm, and metastatic PC remains incurable. The study aims to screen key microRNAs (miRNAs) and transcription factors (TFs) involved in PC. The miRNA expression profile dataset (GSE45604) was downloaded from Gene Expression Omnibus database, including 50 PC and 10 normal specimens. Differentially expressed miRNAs (DEmiRNAs) were identified through limma package in R, and DEmiRNA–DEmiRNA co-regulation network was constructed based on the number of co-regulated target genes. Functional enrichment analysis of co-regulated target genes was performed using clusterProfiler package in R, and miRNA interactions sharing at least 1 functional term were used to construct a DEmiRNA–DEmiRNA functional synergistic network (MFSN). Based on Transcriptional Regulatory Element Database, cancer-related TFs which were co-regulated by DEmiRNAs were utilized to construct a DEmiRNA–TF regulation network. A total of 66 DEmiRNAs were identified, including 7 up-regulated miRNAs with 18,642 target genes and 59 down-regulated miRNAs with 130,694 target genes. Then, the DEmiRNA–DEmiRNA co-regulation network was constructed, including 66 DEmiRNAs and 2024 co-regulation relationships. In MFSN, hsa-miR-1184, hsa-miR-1207-5p, and hsa-miR-24 had significant functional synergistic relationships. The DEmiRNA–TF network contained 6 up-regulated DEmiRNAs and 4 of them were highlighted, as hsa-miR-1184, hsa-miR-1207-5p, hsa-miR-182, and hsa-miR-183. In subnetwork of the 4 miRNAs, peroxisome proliferative activated receptor, alpha (PPARA) and cyclic AMP-responsive element modulator (CREM) were the critical regulated TFs. Four up-regulated miRNAs (hsa-miR-1207-5p, hsa-miR-1184, hsa-miR-182, and hsa-miR-183) and 2 TFs (PPARA and CREM) were identified as key regulators in PC progression. The above 4 miRNAs might participate in PC progression by targeting PPARA and CREM.


Biochemistry | 2017

MicroRNA-294 promotes cellular proliferation and motility through the PI3K/AKT and JAK/STAT pathways by upregulation of NRAS in bladder cancer

Yongwei Li; Zhengfei Shan; Chu Liu; Diandong Yang; Jitao Wu; Changping Men; Yankai Xu

In our study we examined the role of microRNA-294 (miR-294) in bladder cancer and related mechanisms. Realtime polymerase chain reaction (RT-PCR) was performed to determine the expression level of miR-294. Western blot was used to determine the expression of NRAS, mainly factors in the PI3K/AKT and JAK/STAT pathways. Cell counting kit8 assay, clonogenic assay, wound-healing assay, transwell and flow cytometry were used to explore, respectively, cell proliferation, survival, migration, invasion, and apoptosis of bladder cancer cell line T24. The expressions of miR-294 in bladder cancer cells including J82, HT1376, T24, and SW780 were significantly increased compared to those in human bladder epithelium cells (both HCV29 and SV-HUC-1). The proliferation rate, surviving fraction, migration, and invasion of T24 cells in miR-294 mimetic transfected group were significantly increased, while they were significantly decreased by miR294 inhibitor transfection. Moreover, miR-294 suppression could increase the apoptotic rate of T24 cells. In addition, drug resistance of T24 cells to cisplatin was increased in miR-294 mimetic-treated group, while it was decreased by miR-294 inhibitor compared to empty control. Overexpression of miR-294 could upregulate NRAS expression in T24 cells and activate PI3K/AKT and JAK/STAT pathways. We found that miR-294 expression was positively related with proliferation and motility of T24 cells. Moreover, miR-294 suppression could promote the sensitivity of T24 cells to cisplatin. We also found miR-294 could upregulate NRAS and activate the PI3K/AKT and JAK/STAT pathways in T24 cells.


BMC Urology | 2016

The efficacy and safety of silodosin for the treatment of ureteral stones: a systematic review and meta-analysis

Diandong Yang; Jitao Wu; Hejia Yuan; Yuanshan Cui

BackgroundTo evaluate the efficacy and safety of silodosin as a medical expulsive therapy for ureteral stones by means of a systematic review and meta-analysis.MethodsWe searched MEDLINE, EMBASE and the Cochrane Controlled Trials Register to identify randomized controlled trials (RCTs) of silodosin in the treatment of ureteral stones. The reference lists of retrieved studies were also investigated.ResultsSix RCTs, including 916 participants and comparing silodosin with controls, were used in the meta-analysis. Silodosin was superior to controls in terms of stone expulsion rate, the primary efficacy end point in all six RCTs (odds ratio [OR] for expulsion 2.16, 95 % confidence interval [CI] 1.62 to 2.86, p <0.00001). Silodosin was also more effective for secondary efficacy end points; the stone expulsion time (standardized mean difference [SMD] −3.66, 95 % CI −6.61 to −0.71; p =0.01) and analgesic requirements (SMD −0.89, 95 % CI −1.19 to −0.60; p < 0.00001) were significantly reduced compared with those of controls. Other than the incidence of abnormal ejaculation, which was higher in the silodosin groups (OR 2.84, 95 % CI 1.56 to 5.16, p =0.0006), few adverse effects were observed.ConclusionThis meta-analysis indicates silodosin is an effective and safe treatment option for ureteral stones with a low occurrence of side effects.


PLOS ONE | 2017

Knockdown of Mediator Complex Subunit 19 Suppresses the Growth and Invasion of Prostate Cancer Cells

Shengqiang Yu; Yanwei Wang; Hejia Yuan; Hongwei Zhao; Wei Lv; Jian Chen; Fengchun Wan; Dongfu Liu; Zhenli Gao; Jitao Wu

Prostate cancer (PCa) is one of the most common cancers in elderly men. Mediator Complex Subunit 19 (Med19) is overexpressed and plays promotional roles in many cancers. However, the roles of Med19 in PCa are still obscure. In this study, by using immunohistochemical staining, we found higher expression level of Med19 in PCa tissues than in adjacent benign prostate tissues. We then knocked down the Med19 expression in PCa cell lines LNCaP and PC3 by using lentivirus siRNA. Cell proliferation, anchor-independent growth, migration, and invasion were suppressed in Med19 knockdown PCa cells. In nude mice xenograft model, we found that Med19 knockdown PCa cells formed smaller tumors with lower proliferation index than did control cells. In the mechanism study, we found that Med19 could regulate genes involved in cell proliferation, cell cycle, and epithelial-mesenchymal transition, including P27, pAKT, pPI3K, IGF1R, E-Cadherin, N-Cadherin, Vimentin, ZEB2, Snail-1 and Snail-2. Targeting Med19 in PCa cells could inhibit the PCa growth and metastasis, and might be a therapeutic option for PCa in the future.


Oncotarget | 2017

Effects of increased Kindlin-2 expression in bladder cancer stromal fibroblasts

Jitao Wu; Cuicui Yu; Li Cai; Youyi Lu; Lei Jiang; Chu Liu; Yongwei Li; Fan Feng; Zhenli Gao; Zhe Zhu; Shengqiang Yu; Hejia Yuan; Yuanshan Cui

Kindlin-2 is a focal adhesion protein highly expressed in bladder cancer stromal fibroblasts. We investigated the prognostic significance of Kindlin-2 in bladder cancer stromal fibroblasts and evaluated the effects of Kindlin-2 on the malignant behaviors of tumor cells. Immunohistochemical staining of 203 paraffin-embedded bladder cancer tissues showed that Kindlin-2 expression correlated with advanced stage, high grade, and relapse of bladder cancer. Kaplan-Meier survival analysis demonstrated that patients exhibiting high Kindlin-2 expression had shorter survival times than those with low Kindlin-2 expression (p < 0.01). Multivariate analysis revealed that high Kindlin-2 expression leads to poor prognosis in bladder cancer. Using cancer-associated fibroblasts (CAFs) isolated from human bladder cancer tissue, we observed that Kindlin-2 knockdown decreased CAFs activation, resulting in decreased expression of α-smooth muscle actin (α-SMA) and the extracellular matrix protein fibronectin. Kindlin-2 suppression also reduced CAF-induced bladder cancer cell migration and invasion. Moreover, we found that Kindlin-2 activates CAFs and promotes the invasiveness of bladder cancer cells by stimulating TGF-β-induced epithelial-mesenchymal transition. These results support targeting Kindlin-2 and the corresponding activated CAFs in bladder cancer therapy.Kindlin-2 is a focal adhesion protein highly expressed in bladder cancer stromal fibroblasts. We investigated the prognostic significance of Kindlin-2 in bladder cancer stromal fibroblasts and evaluated the effects of Kindlin-2 on the malignant behaviors of tumor cells. Immunohistochemical staining of 203 paraffin-embedded bladder cancer tissues showed that Kindlin-2 expression correlated with advanced stage, high grade, and relapse of bladder cancer. Kaplan-Meier survival analysis demonstrated that patients exhibiting high Kindlin-2 expression had shorter survival times than those with low Kindlin-2 expression (p < 0.01). Multivariate analysis revealed that high Kindlin-2 expression leads to poor prognosis in bladder cancer. Using cancer-associated fibroblasts (CAFs) isolated from human bladder cancer tissue, we observed that Kindlin-2 knockdown decreased CAFs activation, resulting in decreased expression of α-smooth muscle actin (α-SMA) and the extracellular matrix protein fibronectin. Kindlin-2 suppression also reduced CAF-induced bladder cancer cell migration and invasion. Moreover, we found that Kindlin-2 activates CAFs and promotes the invasiveness of bladder cancer cells by stimulating TGF-β-induced epithelial-mesenchymal transition. These results support targeting Kindlin-2 and the corresponding activated CAFs in bladder cancer therapy.


Neurourology and Urodynamics | 2018

Meta-analysis of the efficacy and safety of mirabegron and solifenacin monotherapy for overactive bladder.

Jipeng Wang; Zhongbao Zhou; Yuanshan Cui; Yongwei Li; Hejia Yuan; Zhenli Gao; Zhe Zhu; Jitao Wu

We conducted a meta‐analysis to evaluate the safety and efficacy of mirabegron (50 mg) and solifenacin (5 mg) monotherapy for overactive bladder (OAB) during a 12‐week cycle.


Journal of Cellular and Molecular Medicine | 2017

Knockdown of mediator subunit Med19 suppresses bladder cancer cell proliferation and migration by downregulating Wnt/β-catenin signalling pathway

Hejia Yuan; Shengqiang Yu; Yuanshan Cui; Changping Men; Diandong Yang; Zhenli Gao; Zhe Zhu; Jitao Wu

Mediator complex subunit 19 (Med19), a RNA polymerase II‐embedded coactivator, is reported to be involved in bladder cancer (BCa) progression, but its functional contribution to this process is poorly understood. Here, we investigate the effects of Med19 on malignant behaviours of BCa, as well as to elucidate the possible mechanisms. Med19 expression in 15 BCa tissues was significantly higher than adjacent paired normal tissues using real‐time PCR and Western blot analysis. Immunohistochemical staining of 167 paraffin‐embedded BCa tissues was performed, and the results showed that high Med19 protein level was positively correlated with clinical stages and histopathological grade. Med19 was knocked down in BCa cells using short‐hairpin RNA. Functional assays showed that knocking‐down of Med19 can suppress cell proliferation and migration in T24, UM‐UC3 cells and 5637 in vitro, and inhibited BCa tumour growth in vivo. TOP/FOPflash reporter assay revealed that Med19 knockdown decreased the activity of Wnt/β‐catenin pathway, and the target genes of Wnt/β‐catenin pathway were down‐regulated, including Wnt2, β‐catenin, Cyclin‐D1 and MMP‐9. However, protein levels of Gsk3β and E‐cadherin were elevated. Our data suggest that Med19 expression correlates with aggressive characteristics of BCa and Med19 knockdown suppresses the proliferation and migration of BCa cells through down‐regulating the Wnt/β‐catenin pathway, thereby highlighting Med19 as a potential therapeutic target for BCa treatment.


International Neurourology Journal | 2017

Efficacy and Adverse Events Associated With Use of OnabotulinumtoxinA for Treatment of Neurogenic Detrusor Overactivity: A Meta-Analysis

Hejia Yuan; Yuanshan Cui; Jitao Wu; Peng Peng; Xujie Sun; Zhenli Gao

Purpose OnabotulinumtoxinA is used widely for the treatment of neurogenic detrusor overactivity. We conducted a systematic review and meta-analysis to assess its efficacy and safety for neurogenic detrusor overactivity treatment. Methods A systematic literature review was performed to identify all published randomized double-blind, placebo-controlled trials of onabotulinumtoxinA for neurogenic detrusor overactivity treatment. MEDLINE, Embase, and the CENTRAL were employed. Reference lists of retrieved studies were reviewed carefully. Results Six publications involving 871 patients, which compared onabotulinumtoxinA with a placebo were analyzed. Efficacy of onabotulinumtoxinA treatment was shown as a reduction of the mean number of urinary incontinence episodes per day (mean difference, -1.41; 95% confidence interval [CI], -1.70 to -1.12; P<0.00001), maximum cystometric capacity (135.48; 95% CI, 118.22–152.75; P<0.00001), and maximum detrusor pressure (-32.98; 95% CI, -37.33 to -28.62; P<0.00001). Assessment of adverse events revealed that complications due to onabotulinumtoxinA injection were localized primarily to the urinary tract. Conclusions This meta-analysis suggests that onabotulinumtoxinA is an effective treatment for neurogenic detrusor overactivity with localized advent events.


Biochemistry | 2017

Cathelicidin LL37 promotes epithelial and smooth-muscle-like differentiation of adipose-derived stem cells through the Wnt/β-catenin and NF-κB pathways

Yongwei Li; Zhengfei Shan; Bin Yang; Diandong Yang; Changping Men; Yuanshan Cui; Jitao Wu

Ureter reconstruction is a difficult procedure in urology. Adipose-derived stem cells (ADSCs), along with multipotency and self-renewal capacity, are a preferred choice for tissue engineering-based ureteral reconstruction. We explored the synergic role of cathelicidin LL37 (LL37) in epithelial and smooth-muscle-like differentiation. ADSCs were separated from adipose tissues of mouse and characterized by flow cytometry. The ADSCs were then stably transfected with pGC-FU-GFP (pGC) or pGC containing full-length LL37 (pGC-LL37), respectively. Cell viability and apoptosis were respectively estimated in the stably transfected cells and non-transfected cells. Then, qRT-PCR and Western blot analysis were used for determinations of epithelial marker expressions after induction by all-trans retinoic acid as well as smooth-muscle-like marker expressions after induction by transforming growth factor-β1. Then, possibly involved signaling pathways and extracellular expression of LL37 were detected. Cell viability and apoptosis were not changed after LL37 overexpression. Expression levels of epithelial and smooth-muscle-like markers were significantly upregulated by LL37 overexpression. Moreover, expressions of key kinases involved in the Wnt/β-catenin pathway as well as epithelial marker were upregulated by the LL37 overexpression, while it was reversed by Wnt/β-catenin inhibitor. Likewise, expressions of key kinases involved in the nuclear factor κB (NF-κB) pathway as well as smooth-muscle-like markers were upregulated by LL37 overexpression, which was reversed by NF-κB inhibitor. LL37 was found in the culture medium. LL37, which could be released into the medium, had no impact on cell proliferation and apoptosis of ADSCs. However, LL37 promoted epithelial and smooth-muscle-like differentiation through activating the Wnt/β-catenin and NF-κB pathways, respectively.


International Journal of Biological Markers | 2014

Investigation of key genes associated with prostate cancer using RNA-seq data

Jitao Wu; Fan Feng; Diandong Yang; Shengqiang Yu; Jianqiu Liu; Zhenli Gao

We aimed to identify key genes associated with prostate cancer using RNA-sequencing (RNA-seq) data. RNA-seq data, including 1 cancer sample and 1 adjacent normal sample, were downloaded from the NCBI SRA database and the differentially expressed genes (DEGs) were identified with the software Cufflinks. Functional enrichment analysis was performed to uncover the biological functions of DEGs. Regulatory information was retrieved from the IPA database and a network was established. A total of 147 DEGs were obtained, including 96 downregulated and 51 upregulated DEGs. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that metabolism and signal transduction were the 2 major functions that were significantly influenced. Moreover, an interaction network was built. In conclusion, a number of DEGs was identified and their roles in the pathogenesis of cancer were supported by previous studies. More studies are necessary to further validate their usefulness in the diagnosis and treatment of prostate cancer.

Collaboration


Dive into the Jitao Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge