Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jitbanjong Tangpong is active.

Publication


Featured researches published by Jitbanjong Tangpong.


Journal of Neurochemistry | 2007

Adriamycin-mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain

Jitbanjong Tangpong; Marsha P. Cole; Rukhsana Sultana; Steven Estus; Mary Vore; William H. St. Clair; Suvina Ratanachaiyavong; Daret K. St. Clair; D. Allan Butterfield

Adriamycin (ADR), a potent anti‐tumor agent, produces reactive oxygen species (ROS) in cardiac tissue. Treatment with ADR is dose‐limited by cardiotoxicity. However, the effect of ADR in the other tissues, including the brain, is unclear because ADR does not pass the blood–brain barrier. Some cancer patients receiving ADR treatment develop a transient memory loss, inability to handle complex tasks etc., often referred to by patients as chemobrain. We previously demonstrated that ADR causes CNS toxicity, in part, via systemic release of cytokines and subsequent generation of reactive oxygen and nitrogen species (RONS) in the brain. Here, we demonstrate that treatment with ADR led to an increased circulating level of tumor necrosis factor‐alpha in wild‐type mice and in mice deficient in the inducible form of nitric oxide (iNOSKO). However, the decline in mitochondrial respiration and mitochondrial protein nitration after ADR treatment was observed only in wild‐type mice, not in the iNOSKO mice. Importantly, the activity of a major mitochondrial antioxidant enzyme, manganese superoxide dismutase (MnSOD), was reduced and the protein was nitrated. Together, these results suggest that NO is an important mediator, coupling the effect of ADR with cytokine production and subsequent activation of iNOS expression. We also identified the mitochondrion as an important target of ADR‐induced NO‐mediated CNS injury.


Neuroscience | 2008

A neuronal model of Alzheimer's disease: an insight into the mechanisms of oxidative stress-mediated mitochondrial injury.

Pradoldej Sompol; Wanida Ittarat; Jitbanjong Tangpong; Yumin Chen; I. Doubinskaia; Ines Batinic-Haberle; Hafiz Mohmmad Abdul; D.A. Butterfield; D.K. St. Clair

Alzheimers disease (AD) is associated with beta-amyloid accumulation, oxidative stress and mitochondrial dysfunction. However, the effects of genetic mutation of AD on oxidative status and mitochondrial manganese superoxide dismutase (MnSOD) production during neuronal development are unclear. To investigate the consequences of genetic mutation of AD on oxidative damages and production of MnSOD during neuronal development, we used primary neurons from new born wild-type (WT/WT) and amyloid precursor protein (APP) (NLh/NLh) and presenilin 1 (PS1) (P264L) knock-in mice (APP/PS1) which incorporated humanized mutations in the genome. Increasing levels of oxidative damages, including protein carbonyl, 4-hydroxynonenal (4-HNE) and 3-nitrotyrosine (3-NT), were accompanied by a reduction in mitochondrial membrane potential in both developing and mature APP/PS1 neurons compared with WT/WT neurons suggesting mitochondrial dysfunction under oxidative stress. Interestingly, developing APP/PS1 neurons were significantly more resistant to beta-amyloid 1-42 treatment, whereas mature APP/PS1 neurons were more vulnerable than WT/WT neurons of the same age. Consistent with the protective function of MnSOD, developing APP/PS1 neurons have increased MnSOD protein and activity, indicating an adaptive response to oxidative stress in developing neurons. In contrast, mature APP/PS1 neurons exhibited lower MnSOD levels compared with mature WT/WT neurons indicating that mature APP/PS1 neurons lost the adaptive response. Moreover, mature APP/PS1 neurons had more co-localization of MnSOD with nitrotyrosine indicating a greater inhibition of MnSOD by nitrotyrosine. Overexpression of MnSOD or addition of MnTE-2-PyP(5+) (SOD mimetic) protected against beta-amyloid-induced neuronal death and improved mitochondrial respiratory function. Together, the results demonstrate that compensatory induction of MnSOD in response to an early increase in oxidative stress protects developing neurons against beta-amyloid toxicity. However, continuing development of neurons under oxidative damage conditions may suppress the expression of MnSOD and enhance cell death in mature neurons.


Free Radical Research | 2005

Free radical mediated oxidative stress and toxic side effects in brain induced by the anti cancer drug adriamycin: Insight into chemobrain

Gururaj Joshi; Rukhsana Sultana; Jitbanjong Tangpong; Marsha P. Cole; Daret K. St. Clair; Mary Vore; Steven Estus; D. Allan Butterfield

Adriamycin (ADR) is a chemotherapeutic agent useful in treating various cancers. ADR is a quinone-containing anthracycline chemotherapeutic and is known to produce reactive oxygen species (ROS) in heart. Application of this drug can have serious side effects in various tissues, including brain, apart from the known cardiotoxic side effects, which limit the successful use of this drug in treatment of cancer. Neurons treated with ADR demonstrate significant protein oxidation and lipid peroxidation. Patients under treatment with this drug often complain of forgetfulness, lack of concentration, dizziness (collectively called somnolence or sometimes called chemobrain). In this study, we tested the hypothesis that ADR induces oxidative stress in brain. Accordingly, we examined the in vivo levels of brain protein oxidation and lipid peroxidation induced by i.p. injection of ADR. We also measured levels of the multidrug resistance-associated protein (MRP1) in brain isolated from ADR- or saline-injected mice. MRP1 mediates ATP-dependent export of cytotoxic organic anions, glutathione S-conjugates and sulphates. The current results demonstrated a significant increase in levels of protein oxidation and lipid peroxidation and increased expression of MRP1 in brain isolated from mice, 72 h post i.p injection of ADR. These results are discussed with reference to potential use of this redox cycling chemotheraputic agent in the treatement of cancer and its chemobrain side effect in brain.


Cancer Research | 2011

Manganese Superoxide Dismutase Is a p53-Regulated Gene That Switches Cancers between Early and Advanced Stages

Sanjit K. Dhar; Jitbanjong Tangpong; Luksana Chaiswing; Terry D. Oberley; Daret K. St. Clair

Manganese superoxide dismutase (MnSOD) plays a critical role in the survival of aerobic life, and its aberrant expression has been implicated in carcinogenesis and tumor resistance to therapy. However, despite extensive studies in MnSOD regulation and its role in cancer, when and how the alteration of MnSOD expression occurs during the process of tumor development in vivo are unknown. Here, we generated transgenic mice expressing a luciferase reporter gene under the control of human MnSOD promoter-enhancer elements and investigated the changes of MnSOD transcription using the 7,12-dimethylbenz(α)anthracene (DMBA)/12-O-tetradecanoylphorbol-l3-acetate (TPA) multistage skin carcinogenesis model. The results show that MnSOD expression was suppressed at a very early stage but increased at late stages of skin carcinogenesis. The suppression and subsequent restoration of MnSOD expression were mediated by two transcription-factors, Sp1 and p53. Exposure to DMBA and TPA activated p53 and decreased MnSOD expression via p53-mediated suppression of Sp1 binding to the MnSOD promoter in normal-appearing skin and benign papillomas. In squamous cell carcinomas, Sp1 binding increased because of the loss of functional p53. We used chromatin immunoprecipitation, electrophoretic mobility shift assay, and both knockdown and overexpression of Sp1 and p53 to verify their roles in the expression of MnSOD at each stage of cancer development. The results identify MnSOD as a p53-regulated gene that switches between early and advanced stages of cancer. These findings also provide strong support for the development of means to reactivate p53 for the prevention of tumor progression.


Neuroscience | 2008

Tumor necrosis factor alpha–mediated nitric oxide production enhances manganese superoxide dismutase nitration and mitochondrial dysfunction in primary neurons: an insight into the role of glial cells

Jitbanjong Tangpong; Pradoldej Sompol; Mary Vore; W. St. Clair; D.A. Butterfield; D.K. St. Clair

Tumor necrosis factor-alpha (TNF-alpha), a ubiquitous pro-inflammatory cytokine, is an important mediator in the immune-neuroendocrine system that affects the CNS. The present study demonstrates that treatment with TNF-alpha activates microglia to increase TNF-alpha production in primary cultures of glial cells isolated from wild-type (WT) mice and mice deficient in the inducible form of nitric oxide synthase (iNOSKO). However, mitochondrial dysfunction in WT neurons occurs at lower concentrations of TNF-alpha when neurons are directly treated with TNF-alpha or co-cultured with TNF-alpha-treated microglia than iNOSKO neurons similarly treated. Immunofluorescent staining of primary neurons co-cultured with TNF-alpha-treated microglia reveals that the antioxidant enzyme in mitochondria, manganese superoxide dismutase (MnSOD), is co-localized with nitrotyrosine in WT but not in iNOSKO primary neuronal cells. Importantly, the percentage of surviving neurons is significantly reduced in WT neurons compared with iNOSKO neurons under identical treatment conditions. Together, the results suggest that TNF-alpha activates microglia to produce high levels of TNF-alpha and that production of nitric oxide (NO) in neurons is an important factor affecting MnSOD nitration and subsequent mitochondrial dysfunction.


Molecular Cancer Therapeutics | 2006

Increase in Mrp1 expression and 4-hydroxy-2-nonenal adduction in heart tissue of Adriamycin-treated C57BL/6 mice

Paiboon Jungsuwadee; Marsha P. Cole; Rukhsana Sultana; Gurujaj Joshi; Jitbanjong Tangpong; D. Allan Butterfield; Daret K. St. Clair; Mary Vore

Multidrug resistance-associated protein 1 (MRP1) mediates the ATP-dependent efflux of endobiotics and xenobiotics, including estradiol 17-(β-d-glucuronide), leukotriene C4, and the reduced glutathione conjugate of 4-hydroxy-2-nonenal (HNE), a highly reactive product of lipid peroxidation. Adriamycin is an effective cancer chemotherapeutic drug whose use is limited by cardiotoxicity. Adriamycin induces oxidative stress and production of HNE in cardiac tissue, which may contribute to cardiomyopathy. We investigated the role of Mrp1 in Adriamycin-induced oxidative stress in cardiac tissue. Mice were treated with Adriamycin (20 mg/kg, i.p.), and heart homogenate and sarcolemma membranes were assayed for Mrp1 expression and ATP-dependent transport activity. Expression of Mrp1 was increased at 6 and 24 hours after Adriamycin treatment compared with saline treatment. HNE-adducted proteins were significantly increased (P < 0.001) in the homogenates at 6 hours after Adriamycin treatment and accumulated further with time; HNE adduction of a 190-kDa protein was evident 3 days after Adriamycin treatment. Mrp1 was localized predominately in sarcolemma as shown by confocal and Western blot analysis. Sarcolemma membrane vesicles transported leukotriene C4 with a Km and Vmax of 51.8 nmol/L and 94.1 pmol/min/mg, respectively, and MK571 (10 μmol/L) inhibited the transport activity by 65%. Exposure of HEKMrp1 membranes to HNE (10 μmol/L) significantly decreased the Vmax for estradiol 17-(β-d-glucuronide) transport by 50%. These results show that expression of Mrp1 in the mouse heart is localized predominantly in sarcolemma. Adriamycin treatment increased Mrp1 expression and HNE adduction of Mrp1. Cardiac Mrp1 may play a role in protecting the heart from Adriamycin-induced cardiomyopathy by effluxing HNE conjugates. [Mol Cancer Ther 2006;5(11):2851–60]


Toxicology Letters | 2010

Alleviation of lead poisoning in the brain with aqueous leaf extract of the Thunbergia laurifolia (Linn.)

Jitbanjong Tangpong; Soisungwan Satarug

We used seven groups of 8-week-old male ICR mice, with 6 mice in each group, to test if aqueous leaf extract of the Thai medicinal plant Thunbergia laurifolia Linn. (TL) protects against lead poisoning. We found that co-treatment with aqueous TL leaf extract did not affect levels of lead in blood and brain of mice given lead in drinking water at 1 g/L for 8 weeks. However, co-treatment with aqueous TL leaf extract at 100mg/kg or 200mg/kg body weight was found to alleviate adverse effects of lead on learning deficit and memory loss, evaluated with water maze swimming test. Further, increased activity of the cell-death marker enzyme caspase-3 was observed in the brain of mice treated with lead, thereby suggesting that the memory loss could be caused by lead-induced loss of neurons in the brain. Co-treatment with aqueous TL leaf extract at 100 mg/kg or 200 mg/kg body weight was found to restore the levels of caspase-3 activity and maintain total anti-oxidant capacity and anti-oxidant enzymes in the brain. TL leaf extract thus reduced neuronal cell death and memory loss caused by lead uptake in mice, and the anti-oxidant activities of the TL leaf extract might account for these effects.


Food and Chemical Toxicology | 2014

Neuroprotective effects of xanthone derivative of Garcinia mangostana against lead-induced acetylcholinesterase dysfunction and cognitive impairment.

Moe Pwint Phyu; Jitbanjong Tangpong

Lead poisoning is a common environmental toxicity and low level of lead exposure is responsible for neurobehavioral or intelligence defects. This study was designed to investigate the protective effect of a xanthone derivative of Garcinia mangostana against lead-induced acetycholinesterase (AChE) dysfunction and cognitive impairment in mice. ICR mice were exposed to lead acetate (Pb) in drinking water (1%) with or without xanthone co-administration (100 and 200mg/kgBW/day) for 38days. Xanthone possesses a high phenolic content, which is positive correlation with its antioxidant activity (R(2)=0.98). The IC50 of xanthone on scavenging free radical activities, hydroxyl radical, superoxide radical, hydrogen peroxide and nitric oxide in cell-free system were 0.48±0.08, 1.88±0.09, 2.20±0.03 and 0.98±0.40mg/mL, respectively. We found that Pb induced AChE dysfunction and memory deficit in a dose dependent manner, indicated by in vitro and in vivo studies. However, xanthone significantly restored AChE activity in the blood and brains of mice and prevented Pb-induced neurobehavioral defect indicators with Forced Swimming and Morris water maze tests. Xanthone treatment improved all indicators compared to the Pb-treated group. In conclusion, xanthone alleviates Pb-induced neurotoxicity, in part, by suppression of oxidative damage and reversing AChE activity with a reduction in learning deficit and memory loss.


Gastroenterology Research and Practice | 2015

Anti-Inflammation Property of Syzygium cumini (L.) Skeels on Indomethacin-Induced Acute Gastric Ulceration

Lanchakon Chanudom; Jitbanjong Tangpong

Indomethacin, nonsteroidal anti-inflammatory drug (NSAIDs), induced gastric damage and perforation through the excess generation of reactive oxygen species (ROS). Syzygium cumini (L.) Skeels is commonly used as a medicinal plant and is claimed to have antioxidant activities. The effects of Syzygium cumini (L.) Skeels aqueous extract (SCC) on antifree radical, anti-inflammation, and antiulcer of SCC on indomethacin induced acute gastric ulceration were determined in our study. Scavenging activity at 50% of SCC is higher than ascorbic acid in in vitro study. Mice treated with indomethacin revealed mucosal hemorrhagic lesion and inhibited mucus content. Pretreatment with SCC caused discernible decrease in indomethacin induced gastric lesion and lipid peroxide content. In addition, oxidized glutathione (GSSG), glutathione peroxidase (GPx), nitric oxide (NO) levels, and gastric wall mucus were restored on acute treated mice model. Indomethacin induced inflammation by activated inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α) proinflammatory cytokines to release large amount of ROS/RNS which were ameliorated in mice pretreatment with SCC. SCC showed restoration of the imbalance of oxidative damage leading to amelioration of cyclooxygenase enzyme (COX). In conclusion, SCC acts as an antioxidant, anti-inflammation, and antiulcer against indomethacin.


BioMed Research International | 2013

Protective Effect of Thunbergia laurifolia (Linn.) on Lead Induced Acetylcholinesterase Dysfunction and Cognitive Impairment in Mice

Moe Pwint Phyu; Jitbanjong Tangpong

Thunbergia laurifolia (linn., TL), a natural phenolic compound, has been reported to have many benefits and medicinal properties. The current study ascertains the total phenolic content present in TL aqueous leaf extract and also examines the antioxidant ability of the extract in preserving acetylcholinesterase (AChE) activity of mice exposed to lead in vivo and in vitro model. Mice were given lead acetate (Pb) in drinking water (1 g/L) together with TL 100 and 200 mg/kg/day. The result showed that Pb induced AChE dysfunction in both in vitro and in vivo studies. TL significantly prevented Pb induced neurotoxicity in a dose-dependent manner which was indicated by comparatively better performance of TL treated mice in Morris Water Maze Swimming Test and increased AChE activity in the tissue sample collected from the brains of these mice. TL also exhibited the greatest amount of phenolic content, which has a significant positive correlation with its antioxidant capacity (P < 0.05). Taken together, these data suggested that the total phenolic compounds in TL could exhibit antioxidant and in part neuroprotective properties. It may play a potential treatment strategy for Pb contamination.

Collaboration


Dive into the Jitbanjong Tangpong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marsha P. Cole

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Mary Vore

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terry D. Oberley

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge