Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jitendra Malik is active.

Publication


Featured researches published by Jitendra Malik.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2002

Shape matching and object recognition using shape contexts

Serge J. Belongie; Jitendra Malik; Jan Puzicha

This paper presents my work on computing shape models that are computationally fast and invariant basic transformations like translation, scaling and rotation. In this paper, I propose shape detection using a feature called shape context. Shape context describes all boundary points of a shape with respect to any single boundary point. Thus it is descriptive of the shape of the object. Object recognition can be achieved by matching this feature with a priori knowledge of the shape context of the boundary points of the object. Experimental results are promising on handwritten digits, trademark images.


computer vision and pattern recognition | 2014

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

Ross B. Girshick; Jeff Donahue; Trevor Darrell; Jitendra Malik

Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also present experiments that provide insight into what the network learns, revealing a rich hierarchy of image features. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.


international conference on computer graphics and interactive techniques | 1997

Recovering high dynamic range radiance maps from photographs

Paul E. Debevec; Jitendra Malik

We present a method of recovering high dynamic range radiance maps from photographs taken with conventional imaging equipment. In our method, multiple photographs of the scene are taken with different amounts of exposure. Our algorithm uses these differently exposed photographs to recover the response function of the imaging process, up to factor of scale, using the assumption of reciprocity. With the known response function, the algorithm can fuse the multiple photographs into a single, high dynamic range radiance map whose pixel values are proportional to the true radiance values in the scene. We demonstrate our method on images acquired with both photochemical and digital imaging processes. We discuss how this work is applicable in many areas of computer graphics involving digitized photographs, including image-based modeling, image compositing, and image processing. Lastly, we demonstrate a few applications of having high dynamic range radiance maps, such as synthesizing realistic motion blur and simulating the response of the human visual system.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2011

Contour Detection and Hierarchical Image Segmentation

Pablo Andrés Arbeláez; Michael Maire; Charless C. Fowlkes; Jitendra Malik

This paper investigates two fundamental problems in computer vision: contour detection and image segmentation. We present state-of-the-art algorithms for both of these tasks. Our contour detector combines multiple local cues into a globalization framework based on spectral clustering. Our segmentation algorithm consists of generic machinery for transforming the output of any contour detector into a hierarchical region tree. In this manner, we reduce the problem of image segmentation to that of contour detection. Extensive experimental evaluation demonstrates that both our contour detection and segmentation methods significantly outperform competing algorithms. The automatically generated hierarchical segmentations can be interactively refined by user-specified annotations. Computation at multiple image resolutions provides a means of coupling our system to recognition applications.


computer vision and pattern recognition | 1997

Normalized cuts and image segmentation

Jianbo Shi; Jitendra Malik

We propose a novel approach for solving the perceptual grouping problem in vision. Rather than focusing on local features and their consistencies in the image data, our approach aims at extracting the global impression of an image. We treat image segmentation as a graph partitioning problem and propose a novel global criterion, the normalized cut, for segmenting the graph. The normalized cut criterion measures both the total dissimilarity between the different groups as well as the total similarity within the groups. We show that an efficient computational technique based on a generalized eigenvalue problem can be used to optimize this criterion. We have applied this approach to segmenting static images and found results very encouraging.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2004

Learning to detect natural image boundaries using local brightness, color, and texture cues

David R. Martin; Charless C. Fowlkes; Jitendra Malik

The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements. We formulate features that respond to characteristic changes in brightness, color, and texture associated with natural boundaries. In order to combine the information from these features in an optimal way, we train a classifier using human labeled images as ground truth. The output of this classifier provides the posterior probability of a boundary at each image location and orientation. We present precision-recall curves showing that the resulting detector significantly outperforms existing approaches. Our two main results are 1) that cue combination can be performed adequately with a simple linear model and 2) that a proper, explicit treatment of texture is required to detect boundaries in natural images.


international conference on computer graphics and interactive techniques | 1996

Modeling and rendering architecture from photographs: a hybrid geometry- and image-based approach

Paul E. Debevec; Camillo J. Taylor; Jitendra Malik

We present a new approach for modeling and rendering existing architectural scenes from a sparse set of still photographs. Our modeling approach, which combines both geometry-based and imagebased techniques, has two components. The first component is a photogrammetricmodeling method which facilitates the recovery of the basic geometry of the photographed scene. Our photogrammetric modeling approach is effective, convenient, and robust because it exploits the constraints that are characteristic of architectural scenes. The second component is a model-based stereo algorithm, which recovers how the real scene deviates from the basic model. By making use of the model, our stereo technique robustly recovers accurate depth from widely-spaced image pairs. Consequently, our approach can model large architectural environments with far fewer photographs than current image-based modeling approaches. For producing renderings, we present view-dependent texture mapping, a method of compositing multiple views of a scene that better simulates geometric detail on basic models. Our approach can be used to recover models for use in either geometry-based or image-based rendering systems. We present results that demonstrate our approach’s ability to create realistic renderings of architectural scenes from viewpoints far from the original photographs. CR Descriptors: I.2.10 [Artificial Intelligence]: Vision and Scene Understanding Modeling and recovery of physical attributes; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism Color, shading, shadowing, and texture I.4.8 [Image Processing]: Scene Analysis Stereo; J.6 [Computer-Aided Engineering]: Computer-aided design (CAD).


International Journal of Computer Vision | 2001

Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons

Thomas K. Leung; Jitendra Malik

We study the recognition of surfaces made from different materials such as concrete, rug, marble, or leather on the basis of their textural appearance. Such natural textures arise from spatial variation of two surface attributes: (1) reflectance and (2) surface normal. In this paper, we provide a unified model to address both these aspects of natural texture. The main idea is to construct a vocabulary of prototype tiny surface patches with associated local geometric and photometric properties. We call these 3D textons. Examples might be ridges, grooves, spots or stripes or combinations thereof. Associated with each texton is an appearance vector, which characterizes the local irradiance distribution, represented as a set of linear Gaussian derivative filter outputs, under different lighting and viewing conditions.Given a large collection of images of different materials, a clustering approach is used to acquire a small (on the order of 100) 3D texton vocabulary. Given a few (1 to 4) images of any material, it can be characterized using these textons. We demonstrate the application of this representation for recognition of the material viewed under novel lighting and viewing conditions. We also illustrate how the 3D texton model can be used to predict the appearance of materials under novel conditions.


International Journal of Computer Vision | 2001

Contour and Texture Analysis for Image Segmentation

Jitendra Malik; Serge J. Belongie; Thomas K. Leung; Jianbo Shi

This paper provides an algorithm for partitioning grayscale images into disjoint regions of coherent brightness and texture. Natural images contain both textured and untextured regions, so the cues of contour and texture differences are exploited simultaneously. Contours are treated in the intervening contour framework, while texture is analyzed using textons. Each of these cues has a domain of applicability, so to facilitate cue combination we introduce a gating operator based on the texturedness of the neighborhood at a pixel. Having obtained a local measure of how likely two nearby pixels are to belong to the same region, we use the spectral graph theoretic framework of normalized cuts to find partitions of the image into regions of coherent texture and brightness. Experimental results on a wide range of images are shown.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2004

Spectral grouping using the Nystrom method

Charless C. Fowlkes; Serge J. Belongie; Fan R. K. Chung; Jitendra Malik

Spectral graph theoretic methods have recently shown great promise for the problem of image segmentation. However, due to the computational demands of these approaches, applications to large problems such as spatiotemporal data and high resolution imagery have been slow to appear. The contribution of this paper is a method that substantially reduces the computational requirements of grouping algorithms based on spectral partitioning making it feasible to apply them to very large grouping problems. Our approach is based on a technique for the numerical solution of eigenfunction problems known as the Nystrom method. This method allows one to extrapolate the complete grouping solution using only a small number of samples. In doing so, we leverage the fact that there are far fewer coherent groups in a scene than pixels.

Collaboration


Dive into the Jitendra Malik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pietro Perona

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Saurabh Gupta

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Knowles

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Joseph Weber

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge