Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jitesh P. Jani is active.

Publication


Featured researches published by Jitesh P. Jani.


Cancer Research | 2008

Antitumor Activity and Pharmacology of a Selective Focal Adhesion Kinase Inhibitor, PF-562,271

Walter Gregory Roberts; Ethan Ung; Pamela Whalen; Beth Cooper; Catherine A. Hulford; Christofer Autry; Daniel T. Richter; Earling Emerson; Jing Lin; John Charles Kath; Kevin Coleman; Lili Yao; Luis Martinez-Alsina; Marianne Lorenzen; Martin A. Berliner; Michael Joseph Luzzio; Nandini Chaturbhai Patel; Erika Schmitt; Susan Deborah Lagreca; Jitesh P. Jani; Matt Wessel; Eric S. Marr; Matt Griffor; Felix Vajdos

Cancer cells are characterized by the ability to grow in an anchorage-independent manner. The activity of the nonreceptor tyrosine kinase, focal adhesion kinase (FAK), is thought to contribute to this phenotype. FAK localizes in focal adhesion plaques and has a role as a scaffolding and signaling protein for other adhesion molecules. Recent studies show a strong correlation between increased FAK expression and phosphorylation status and the invasive phenotype of aggressive human tumors. PF-562,271 is a potent, ATP-competitive, reversible inhibitor of FAK and Pyk2 catalytic activity with a IC(50) of 1.5 and 14 nmol/L, respectively. Additionally, PF-562,271 displayed robust inhibition in an inducible cell-based assay measuring phospho-FAK with an IC(50) of 5 nmol/L. PF-562,271 was evaluated against multiple kinases and displays >100x selectivity against a long list of nontarget kinases. PF-562,271 inhibits FAK phosphorylation in vivo in a dose-dependent fashion (calculated EC(50) of 93 ng/mL, total) after p.o. administration to tumor-bearing mice. In vivo inhibition of FAK phosphorylation (>50%) was sustained for >4 hours with a single p.o. dose of 33 mg/kg. Antitumor efficacy and regressions were observed in multiple human s.c. xenograft models. No weight loss, morbidity, or mortality were observed in any in vivo experiment. Tumor growth inhibition was dose and drug exposure dependent. Taken together, these data show that kinase inhibition with an ATP-competitive small molecule inhibitor of FAK decreases the phospho-status in vivo, resulting in robust antitumor activity.


Molecular Cancer Therapeutics | 2010

Evaluation of Selective γ-Secretase Inhibitor PF-03084014 for Its Antitumor Efficacy and Gastrointestinal Safety to Guide Optimal Clinical Trial Design

Ping Wei; Marlena Walls; Ming Qiu; Richard Ding; Robert H. Denlinger; Anthony Wong; Kosta Tsaparikos; Jitesh P. Jani; Natilie Hosea; Michelle Sands; Sophia Randolph; Tod Smeal

Aberrant regulation of Notch signaling has been implicated in tumorigenesis. Proteolytic release of the Notch intracellular domain (NICD) by γ-secretase plays a key role in Notch-dependent nuclear signaling. γ-Secretase is an attractive pharmaceutical target for therapeutic intervention in cancer. We describe the potent antitumor effects of PF-03084014, a small molecule that is a reversible, noncompetitive, and selective γ-secretase inhibitor. The ability of PF-03084014 to inhibit γ-secretase activity was shown by the reduction of endogenous NICD levels and by the downregulation of Notch target genes Hes-1 and cMyc in the T-cell acute lymphoblastic leukemia (T-ALL) cell line HPB-ALL. PF-03084014 caused cell growth inhibition of several T-ALL cell lines via cell cycle arrest and induction of apoptosis. PF-03084014 treatment also resulted in robust NICD reduction in HBP-ALL xenograft models. Broad antitumor efficacy at well-tolerated dose levels was observed in six Notch-dependent models. Additional mechanism-of-action studies showed inhibition of tumor cell proliferation and induction of apoptosis in HPB-ALL tumors, suggesting that the antitumor activity of PF-03084014 may be mediated by its direct effects on tumor cell growth or survival. Further studies on PF-03084014–induced gastrointestinal toxicity identified an intermittent dosing schedule that displayed reduced body weight loss and sustained antitumor efficacy. We also showed that glucocorticoids abrogated PF-03084014–induced gastrointestinal toxicity and delayed administration of glucocorticoids did not compromise its protection effect. Collectively, the results show that inhibition of Notch signaling by PF-03084014 while minimizing gastrointestinal toxicity presents a promising approach for development of therapies for Notch receptor–dependent cancers. This compound is being investigated for the treatment of T-ALL and advanced solid tumors in phase I clinical trials. Mol Cancer Ther; 9(6); 1618–28. ©2010 AACR.


Cancer communications | 1991

Lovastatin, a cholesterol biosynthesis inhibitor, inhibits the growth of human H-ras oncogene transformed cells in nude mice

Said M. Sebti; George T. Tkalcevic; Jitesh P. Jani

Post-translational modification of oncogenic p21ras proteins with farnesyl, a lipid intermediate in cholesterol biosynthesis, is required for p21ras membrane association and for the ability of p21ras to transform cultured cells. We have tested the ability of lovastatin, a specific inhibitor of cholesterol biosynthesis, to inhibit the growth of ras oncogene-transformed cells in vivo. Balb/c mouse 3T3 cells, transfected with H-ras oncogene from human EJ bladder carcinoma, were highly tumorigenic in nude mice. Immunoprecipitation studies with transformed EJ cells showed that lovastatin (1-100 microM) inhibited p21ras membrane association in a concentration-dependent manner and that a 10 microM concentration reduced the amount of p21ras bound to the membrane by 50%. Lovastatin also inhibited EJ cell growth in a concentration range that closely paralleled that required for inhibition of p21ras membrane association. Treatment of nude mice bearing subcutaneous (s.c.) EJ tumors with lovastatin (50 mg/kg) significantly inhibited the abilities of these tumors to grow as early as four days and, by day 12, the lovastatin treated group of animals had tumors with an average size that was 3-fold smaller than those in the saline treated group. Western blotting studies showed that lovastatin (50 mg/kg) was also able to inhibit p21ras membrane association in EJ tumors implanted s.c. in nude mice. These results demonstrate that lovastatin, an inhibitor of cholesterol biosynthesis, inhibited in vivo tumor growth of H-ras oncogene transformed cells. The results also suggest that inhibition of p21ras membrane association, an essential step in ras oncogene neoplastic transformation, is one mechanism by which lovastatin may express its antitumor activity.


Molecular Cancer Therapeutics | 2010

PF-03814735, an Orally Bioavailable Small Molecule Aurora Kinase Inhibitor for Cancer Therapy

Jitesh P. Jani; Vincent Bernardo; Samit Kumar Bhattacharya; David Briere; Bruce D. Cohen; Kevin Coleman; James G. Christensen; Erling O. Emerson; Amy B. Jakowski; Kenneth E. Hook; Gerrit Los; James D. Moyer; Ingrid Pruimboom-Brees; Leslie R. Pustilnik; Ann Marie Rossi; Stefan J. Steyn; Chunyan Su; Konstantinos Tsaparikos; Donn G. Wishka; Kwansik Yoon; John Jakubczak

The Aurora family of highly related serine/threonine kinases plays a key role in the regulation of mitosis. Aurora1 and Aurora2 play important but distinct roles in the G2 and M phases of the cell cycle and are essential for proper chromosome segregation and cell division. Overexpression and amplification of Aurora2 have been reported in different tumor types, including breast, colon, pancreatic, ovarian, and gastric cancer. PF-03814735 is a novel, potent, orally bioavailable, reversible inhibitor of both Aurora1 and Aurora2 kinases that is currently in phase I clinical trials for the treatment of advanced solid tumors. In intact cells, the inhibitory activity of PF-03814735 on the Aurora1 and Aurora2 kinases reduces levels of phospho-Aurora1, phosphohistone H3, and phospho-Aurora2. PF-03814735 produces a block in cytokinesis, resulting in inhibition of cell proliferation and the formation of polyploid multinucleated cells. Although PF-03814735 produces significant inhibition of several other protein kinases, the predominant biochemical effects in cellular assays are consistent with inhibition of Aurora kinases. Once-daily oral administration of PF-03814735 to mice bearing human xenograft tumors produces a reduction in phosphohistone H3 in tumors at doses that are tolerable and that result in significant inhibition of tumor growth. The combination of PF-03814735 and docetaxel in xenograft mouse tumor models shows additive tumor growth inhibition. These results support the clinical evaluation of PF-03814735 in cancer patients. Mol Cancer Ther; 9(4); 883–94. ©2010 AACR.


Cancer Research | 2007

Discovery and Pharmacologic Characterization of CP-724,714, a Selective ErbB2 Tyrosine Kinase Inhibitor

Jitesh P. Jani; Richard S. Finn; Mary Campbell; Kevin Coleman; Richard D. Connell; Nicolas Currier; Erling O. Emerson; Eugenia Floyd; Shawn Harriman; John Charles Kath; Joel Morris; James D. Moyer; Leslie R. Pustilnik; Kristina Rafidi; Sherry L. Ralston; Ann Marie Rossi; Stefanus J. Steyn; Larry Wagner; Steven Winter; Samit Kumar Bhattacharya

Amplification and overexpression of erbB2 (Her-2/neu) proto-oncogene has been linked to human malignancies including tumors of the breast, ovary, and stomach. It has been implicated in tumor growth, sensitivity to standard chemotherapy, prognosis of patients, and disease-free survival. Although the clinical use of trastuzumab (Herceptin) has prolonged the survival of breast cancer patients with erbB2-overexpressing tumors, there is an urgent need for more potent and orally bioavailable small-molecule inhibitors. CP-724,714 is a potent inhibitor of erbB2 receptor autophosphorylation in intact cells and is currently undergoing phase I clinical trials. Here, we describe the effects of CP-724,714 in vitro and in vivo in human breast cancer models. CP-724,714 is selective for inhibiting growth of HER2-driven cell lines. In addition, we show that it induces G1 cell cycle block in erbB2-overexpressing BT-474 human breast carcinoma cells and inhibits erbB2 autophosphorylation in xenografts when administered p.o. to athymic mice. It induces a marked reduction of extracellular signal-regulated kinase and Akt phosphorylation, tumor cell apoptosis, and release of caspase-3. P.o. administration (q.d. or b.i.d.) of CP-724,714 inhibits the growth of erbB2-overexpressing tumors in athymic mice without overt adverse effects.


PLOS ONE | 2013

Antitumor Efficacy of the Dual PI3K/mTOR Inhibitor PF-04691502 in a Human Xenograft Tumor Model Derived from Colorectal Cancer Stem Cells Harboring a PIK3CA Mutation

Douglas D. Fang; Cathy Zhang; Yin Gu; Jitesh P. Jani; Joan Cao; Konstantinos Tsaparikos; Jing Yuan; Melissa Thiel; Amy Jackson-Fisher; Qing Zong; Patrick B. Lappin; Tomoko Hayashi; Richard Schwab; Anthony Wong; Annette John-Baptiste; Shubha Bagrodia; Geritt Los; Steve Bender; James G. Christensen; Todd VanArsdale

PIK3CA (phosphoinositide-3-kinase, catalytic, alpha polypeptide) mutations can help predict the antitumor activity of phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway inhibitors in both preclinical and clinical settings. In light of the recent discovery of tumor-initiating cancer stem cells (CSCs) in various tumor types, we developed an in vitro CSC model from xenograft tumors established in mice from a colorectal cancer patient tumor in which the CD133+/EpCAM+ population represented tumor-initiating cells. CD133+/EpCAM+ CSCs were enriched under stem cell culture conditions and formed 3-dimensional tumor spheroids. Tumor spheroid cells exhibited CSC properties, including the capability for differentiation and self-renewal, higher tumorigenic potential and chemo-resistance. Genetic analysis using an OncoCarta™ panel revealed a PIK3CA (H1047R) mutation in these cells. Using a dual PI3K/mTOR inhibitor, PF-04691502, we then showed that blockage of the PI3K/mTOR pathway inhibited the in vitro proliferation of CSCs and in vivo xenograft tumor growth with manageable toxicity. Tumor growth inhibition in mice was accompanied by a significant reduction of phosphorylated Akt (pAKT) (S473), a well-established surrogate biomarker of PI3K/mTOR signaling pathway inhibition. Collectively, our data suggest that PF-04691502 exhibits potent anticancer activity in colorectal cancer by targeting both PIK3CA (H1047R) mutant CSCs and their derivatives. These results may assist in the clinical development of PF-04691502 for the treatment of a subpopulation of colorectal cancer patients with poor outcomes.


Frontiers of Medicine in China | 2013

Combined gemcitabine and CHK1 inhibitor treatment induces apoptosis resistance in cancer stem cell-like cells enriched with tumor spheroids from a non-small cell lung cancer cell line

Douglas D. Fang; Joan Cao; Jitesh P. Jani; Konstantinos Tsaparikos; Alessandra Blasina; Jill Kornmann; Maruja E. Lira; Jianying Wang; Zuzana Jirout; Justin Thomas Bingham; Zhou Zhu; Yin Gu; Gerrit Los; Zdenek Hostomsky; Todd VanArsdale

Evaluating the effects of novel drugs on appropriate tumor models has become crucial for developing more effective therapies that target highly tumorigenic and drug-resistant cancer stem cell (CSC) populations. In this study, we demonstrate that a subset of cancer cells with CSC properties may be enriched into tumor spheroids under stem cell conditions from a non-small cell lung cancer cell line. Treating these CSC-like cells with gemcitabine alone and a combination of gemcitabine and the novel CHK1 inhibitor PF-00477736 revealed that PF-00477736 enhances the anti-proliferative effect of gemcitabine against both the parental and the CSC-like cell populations. However, the CSC-like cells exhibited resistance to gemcitabine-induced apoptosis. Collectively, the spheroid-forming CSC-like cells may serve as a model system for understanding the mechanism underlying the drug resistance of CSCs and for guiding the development of better therapies that can inhibit tumor growth and eradicate CSCs.


mAbs | 2012

Biochemical and pharmacological characterization of human c-Met neutralizing monoclonal antibody CE-355621.

Neil R. Michaud; Jitesh P. Jani; Stephen M. Hillerman; Konstantinos Tsaparikos; Elsa G. Barbacci-Tobin; Elisabeth Knauth; Henry Putz; Mary Campbell; George A. Karam; Boris A. Chrunyk; David F. Gebhard; Larry L. Green; Jinghai J. Xu; Margaret C. Dunn; Tim M. Coskran; Jean-Martin Lapointe; Bruce D. Cohen; Kevin Coleman; Vahe Bedian; Patrick W. Vincent; Shama Kajiji; Stefan J. Steyn; Gary Borzillo; Gerrit Los

The c-Met proto-oncogene is a multifunctional receptor tyrosine kinase that is stimulated by its ligand, hepatocyte growth factor (HGF), to induce cell growth, motility and morphogenesis. Dysregulation of c-Met function, through mutational activation or overexpression, has been observed in many types of cancer and is thought to contribute to tumor growth and metastasis by affecting mitogenesis, invasion, and angiogenesis. We identified human monoclonal antibodies that bind to the extracellular domain of c-Met and inhibit tumor growth by interfering with ligand-dependent c-Met activation. We identified antibodies representing four independent epitope classes that inhibited both ligand binding and ligand-dependent activation of c-Met in A549 cells. In cells, the antibodies antagonized c-Met function by blocking receptor activation and by subsequently inducing downregulation of the receptor, translating to phenotypic effects in soft agar growth and tubular morphogenesis assays. Further characterization of the antibodies in vivo revealed significant inhibition of c-Met activity (≥ 80% lasting for 72–96 h) in excised tumors corresponded to tumor growth inhibition in multiple xenograft tumor models. Several of the antibodies identified inhibited the growth of tumors engineered to overexpress human HGF and human c-Met (S114 NIH 3T3) when grown subcutaneously in athymic mice. Furthermore, lead candidate antibody CE-355621 inhibited the growth of U87MG human glioblastoma and GTL-16 gastric xenografts by up to 98%. The findings support published pre-clinical and clinical data indicating that targeting c-Met with human monoclonal antibodies is a promising therapeutic approach for the treatment of cancer.


PLOS ONE | 2015

NSC666715 and Its Analogs Inhibit Strand-Displacement Activity of DNA Polymerase β and Potentiate Temozolomide-Induced DNA Damage, Senescence and Apoptosis in Colorectal Cancer Cells.

Aruna S. Jaiswal; Harekrushna Panda; Brian K. Law; Jay Sharma; Jitesh P. Jani; Robert Hromas; Satya Narayan

Recently approved chemotherapeutic agents to treat colorectal cancer (CRC) have made some impact; however, there is an urgent need for newer targeted agents and strategies to circumvent CRC growth and metastasis. CRC frequently exhibits natural resistance to chemotherapy and those who do respond initially later acquire drug resistance. A mechanism to potentially sensitize CRC cells is by blocking the DNA polymerase β (Pol-β) activity. Temozolomide (TMZ), an alkylating agent, and other DNA-interacting agents exert DNA damage primarily repaired by a Pol-β-directed base excision repair (BER) pathway. In previous studies, we used structure-based molecular docking of Pol-β and identified a potent small molecule inhibitor (NSC666715). In the present study, we have determined the mechanism by which NSC666715 and its analogs block Fen1-induced strand-displacement activity of Pol-β-directed LP-BER, cause apurinic/apyrimidinic (AP) site accumulation and induce S-phase cell cycle arrest. Induction of S-phase cell cycle arrest leads to senescence and apoptosis of CRC cells through the p53/p21 pathway. Our initial findings also show a 10-fold reduction of the IC50 of TMZ when combined with NSC666715. These results provide a guide for the development of a target-defined strategy for CRC chemotherapy that will be based on the mechanisms of action of NSC666715 and TMZ. This combination strategy can be used as a framework to further reduce the TMZ dosages and resistance in CRC patients.


Molecular Cancer Therapeutics | 2009

Abstract A86: Design, synthesis, and SAR of focal adhesion kinase (FAK) inhibitors

Walter Gregory Roberts; Martin A. Berliner; Kevin Coleman; Erling Emerson; Matt Griffor; Catherine A. Hulford; Jitesh P. Jani; John Charles Kath; Susan Deborah Lagreca; Jing Lin; Marianne Lorenzen; Eric S. Marr; Luis Martinez-Alsina; Nandini Chaturbhai Patel; Daniel T. Richter; Erika Roberts; Christopher Autry; Ethan Ung; Vajdos Felix; Beth Cooper Vetelino; Matthew D. Wessel; Pamela Whalen; Huiping Xu; Lili Yao

Focal adhesion kinase (FAK) is a non‐tyrosine kinase that localizes to focal adhesion plaques. It is activated in response to intergin binding to cellular ligands and when phosphorylated inhibits anoikis allowing for anchorage independent cell growth. Recent studies have shown increased FAK expression and phosphorylation status in many types of invasive and aggressive human tumors strongly suggesting FAK is a possible target for anticancer chemotherapy. Literature, in house HTS and de novo studies identified 2, 4‐diaminopyrimidines as potent FAK inhibitors. Early SAR efforts quickly determined that smaller substituents, particularly CF3, were optimal in the C5 position. Parallel medicinal chemistry strategies were executed for the C2 and C4 positions. These studies suggested that substituted aryl and fused heteroaryl groups at the C2 position in conjunction with substituted phenyl and heterocycles at the C4 position imparted optimum activity and metabolic stability. Inhibitor‐FAK co‐crystal structures were utilized to guide in the SAR strategy around the 2, 4‐diaminopyrimidine template which afforded several lead compounds. The team9s effort culminated in the advancement of PF‐562,271 as a potent and reversible inhibitor of FAK (kinase IC50 of 2 nM and cell IC50 of 5 nM) that is > 100x selective against a long list of non‐target kinases. In summary, detailed SAR studies were executed on the 2, 4‐diaminopyrimidine templates that produced potent inhibitors of FAK with improved ADME properties, and identified a novel and potent series of FAK inhibitors that are selective against most other kinases and have shown activity in clinical trials. This poster will present design, synthesis, challenging chemistry, optimization, and complete inhibitor chemical structures of lead analogs. Citation Information: Mol Cancer Ther 2009;8(12 Suppl):A86.

Collaboration


Dive into the Jitesh P. Jani's collaboration.

Researchain Logo
Decentralizing Knowledge