Jitesh R. Bhatt
Physical Research Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jitesh R. Bhatt.
Journal of Cosmology and Astroparticle Physics | 2013
Abhishek Basak; Jitesh R. Bhatt; S. Shankaranarayanan; K. V. Prasantha Varma
We study the dynamics of ELKO in the context of accelerated phase of our universe. To avoid the fine tuning problem associated with the initial conditions, it is required that the dynamical equations lead to an early-time attractor. In the earlier works, it was shown that the dynamical equations containing ELKO fields do not lead to early-time stable fixed points. In this work, using redefinition of variables, we show that ELKO cosmology admits early-time stable fixed points. More interestingly, we show that ELKO cosmology admit two sets of attractor points corresponding to slow and fast-roll inflation. The fast-roll inflation attractor point is unique for ELKO as it is independent of the form of the potential. We also discuss the plausible choice of interaction terms in these two sets of attractor points and constraints on the coupling constant.
Journal of Cosmology and Astroparticle Physics | 2011
Abhishek Basak; Jitesh R. Bhatt
We investigate the possibility of the inflation driven by a Lorentz invariant non-standard spinor field. As these spinors are having dominant interaction via gravitational field only, they are considered as Dark Spinors. We study how these dark-spinors can drive the inflation and investigate the cosmological (scalar) perturbations generated by them. Though the dark-spinors obey a Klein-Gordon like equation, the underlying theory of the cosmological perturbations is far more complex than the theories which are using a canonical scalar field. For example the sound speed of the perturbations is not a constant but varies with time. We find that in order to explain the observed value of the spectral-index ns one must have upper bound on the values of the background NSS-field. The tensor to scalar ratio remains as small as that in the case of canonical scalar field driven inflation because the correction to tensor spectrum due to NSS is required to be very small. In addition we discuss the relationship of results with previous results obtained by using the Lorentz invariance violating theories.
Physics Letters B | 2010
Jitesh R. Bhatt; Bipin R. Desai; Ernest Ma; G. Rajasekaran; Utpal Sarkar
We propose a new solution to the origin of dark energy. We suggest that it was created dynamically from the condensate of a singlet neutrino at a late epoch of the early Universe through its effective self-interaction. This singlet neutrino is also the Dirac partner of one of the three observed neutrinos, hence dark energy is related to neutrino mass. The onset of this condensate formation in the early Universe is also related to matter density and offers an explanation of the coincidence problem of why dark energy (70%) and total matter (30%) are comparable at the present time. We demonstrate this idea in a model of neutrino mass with (right-handed) singlet neutrinos and a singlet scalar.
Journal of High Energy Physics | 2010
Jitesh R. Bhatt; Hiranmaya Mishra; V. Sreekanth
We investigate the thermal photon production-rates using one dimensional boost-invariant second order relativistic hydrodynamics to find proper time evolution of the energy density and the temperature. The effect of bulk-viscosity and non-ideal equation of state are taken into account in a manner consistent with recent lattice QCD estimates. It is shown that the non-ideal gas equation of state i.e ε − 3 P ≠ 0 behaviour of the expanding plasma, which is important near the phase-transition point, can significantly slow down the hydrodynamic expansion and thereby increase the photon production-rates. Inclusion of the bulk viscosity may also have similar effect on the hydrodynamic evolution. However the effect of bulk viscosity is shown to be significantly lower than the non-ideal gas equation of state. We also analyze the interesting phenomenon of bulk viscosity induced cavitation making the hydrodynamical description invalid. It is shown that ignoring the cavitation phenomenon can lead to erroneous estimation of the photon flux.
Physics Letters B | 2011
Jitesh R. Bhatt; Hiranmaya Mishra; V. Sreekanth
Abstract We study evolution of quark–gluon matter in the ultrarelativistic heavy-ion collisions within the frame work of relativistic second-order viscous hydrodynamics. In particular, by using the various prescriptions of a temperature-dependent shear viscosity to the entropy ratio, we show that the hydrodynamic description of the relativistic fluid becomes invalid due to the phenomenon of cavitation. For most of the initial conditions relevant for LHC, the cavitation sets in very early stage. The cavitation in this case is entirely driven by the large values of shear viscosity. Moreover we also demonstrate that the conformal terms used in equations of the relativistic dissipative hydrodynamic can influence the cavitation time.
Physical Review D | 2009
Jitesh R. Bhatt; Utpal Sarkar
We demonstrate that Majorana neutrinos can form Cooper pairs due to long-range attractive forces and show BCS superfluidity in a class of mass varying neutrino dark energy models. We describe the condensates for Majorana neutrinos and estimate the value of the gap, critical temperature, and Pippard coherence length for a simple neutrino dark energy model. In the strong coupling regime bosonic degree of freedom can become important, and Bose-Einstein condensate may govern the dynamics for the mass varying neutrino models. Formation of the condensates can significantly alter the instability scenario in the mass varying neutrino models.
Nuclear Physics | 2014
Avdhesh Kumar; Jitesh R. Bhatt; Ananta P. Mishra
Abstract Formalism to calculate the hydrodynamic fluctuations by applying the Onsager theory to the relativistic Navier–Stokes equation is already known. In this work, we calculate hydrodynamic fluctuations within the framework of the second order hydrodynamics of Muller, Israel and Stewart and its generalization to the third order. We have also calculated the fluctuations for several other causal hydrodynamical equations. We show that the form for the Onsager-coefficients and form of the correlation functions remain the same as those obtained by the relativistic Navier–Stokes equation and do not depend on any specific model of hydrodynamics. Further we numerically investigate evolution of the correlation function using the one dimensional boost-invariant (Bjorken) flow. We compare the correlation functions obtained using the causal hydrodynamics with the correlation function for the relativistic Navier–Stokes equation. We find that the qualitative behavior of the correlation functions remains the same for all the models of the causal hydrodynamics.
Nuclear Physics | 2012
Jitesh R. Bhatt; Hiranmaya Mishra; V. Sreekanth
Abstract We study the effects of bulk and shear viscosities on both hydrodynamical evolution and thermal dilepton emission rate from the QGP phase at RHIC energies. We use lattice QCD inspired parametrization for the bulk viscosity and trace anomaly (equation of state) to describe behavior of the system near the critical temperature T c . Ratio of the shear viscosity to entropy density is taken to be η / s ∼ 1 / 4 π . We calculate the corrections on the dilepton production rates due to modification in the distribution function, arising due to the presence of the bulk and shear viscosities. It is shown that when the system temperature evolves close to T c the effect of the bulk viscosity on the dilepton emission rates cannot be ignored. It is demonstrated that the bulk viscosity can suppress the thermal dilepton spectra where as the effect of the shear viscosity is to enhance it. Further we show that the bulk viscosity driven fragmentation or cavitation can set in very early during the hydrodynamical evolution and this in turn would make the hydrodynamical treatment invalid beyond the cavitation time. We find that even though the finite bulk viscosity corrections and the onset of the cavitation reduce the production rates, the effect of the minimal η / s = 1 / 4 π can enhance the dilepton production rates significantly in the regime p T ⩾ 2 GeV .
International Journal of Modern Physics E-nuclear Physics | 2010
Jitesh R. Bhatt; V. Sreekanth
Using the second order Israel–Stewart hydrodynamics we discuss the effect of viscosity on photon production in a parton plasma created in relativistic heavy ion collisions. We find that photon production rates can be enhanced by several factors due to the viscous effect in a chemically nonequilibrated plasma.
Physics Letters B | 2011
Mofazzal Azam; Jitesh R. Bhatt; Utpal Sarkar
Abstract Superfluid condensation of neutrinos of cosmological origin at a low enough temperature can provide simple and elegant solution to the problems of neutrino oscillations and the accelerated expansion of the universe. It would give rise to a late time cosmological constant of small magnitude and also generate tiny masses for the neutrinos as observed from their flavor oscillations. We show that carefully prepared beta decay experiments in the laboratory would carry signatures of such a condensation, and thus, it would be possible to either establish or rule out neutrino condensation of cosmological scale in laboratory experiments.