Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where JitKang Lim is active.

Publication


Featured researches published by JitKang Lim.


Nanoscale Research Letters | 2013

Characterization of magnetic nanoparticle by dynamic light scattering.

JitKang Lim; Swee Pin Yeap; Hui Xin Che; S.C. Low

Here we provide a complete review on the use of dynamic light scattering (DLS) to study the size distribution and colloidal stability of magnetic nanoparticles (MNPs). The mathematical analysis involved in obtaining size information from the correlation function and the calculation of Z-average are introduced. Contributions from various variables, such as surface coating, size differences, and concentration of particles, are elaborated within the context of measurement data. Comparison with other sizing techniques, such as transmission electron microscopy and dark-field microscopy, revealed both the advantages and disadvantages of DLS in measuring the size of magnetic nanoparticles. The self-assembly process of MNP with anisotropic structure can also be monitored effectively by DLS.


ACS Nano | 2011

Magnetophoresis of nanoparticles.

JitKang Lim; Caitlin Lanni; Eric R. Evarts; Frederick Lanni; Robert D. Tilton; Sara A. Majetich

Iron oxide cores of 35 nm are coated with gold nanoparticles so that individual particle motion can be tracked in real time through the plasmonic response using dark field optical microscopy. Although Brownian and viscous drag forces are pronounced for nanoparticles, we show that magnetic manipulation is possible using large magnetic field gradients. The trajectories are analyzed to separate contributions from the different types of forces. With field gradients up to 3000 T/m, forces as small as 1.5 fN are detected.


Physics in Medicine and Biology | 2010

Characterization of Single-core Magnetite Nanoparticles for Magnetic Imaging by SQUID-relaxometry

Natalie L. Adolphi; Dale L. Huber; Howard C. Bryant; Todd C. Monson; Danielle L. Fegan; JitKang Lim; Jason E. Trujillo; Trace E. Tessier; Debbie M. Lovato; Kimberly S. Butler; Paula Polyak Provencio; Helen J. Hathaway; Sara A. Majetich; Richard S. Larson; Edward R. Flynn

Optimizing the sensitivity of SQUID (superconducting quantum interference device) relaxometry for detecting cell-targeted magnetic nanoparticles for in vivo diagnostics requires nanoparticles with a narrow particle size distribution to ensure that the Néel relaxation times fall within the measurement timescale (50 ms-2 s, in this work). To determine the optimum particle size, single-core magnetite nanoparticles (with nominal average diameters 20, 25, 30 and 35 nm) were characterized by SQUID relaxometry, transmission electron microscopy, SQUID susceptometry, dynamic light scattering and zeta potential analysis. The SQUID relaxometry signal (detected magnetic moment/kg) from both the 25 nm and 30 nm particles was an improvement over previously studied multi-core particles. However, the detected moments were an order of magnitude lower than predicted based on a simple model that takes into account the measured size distributions (but neglects dipolar interactions and polydispersity of the anisotropy energy density), indicating that improved control of several different nanoparticle properties (size, shape and coating thickness) will be required to achieve the highest detection sensitivity. Antibody conjugation and cell incubation experiments show that single-core particles enable a higher detected moment per cell, but also demonstrate the need for improved surface treatments to mitigate aggregation and improve specificity.


RSC Advances | 2014

Magnetophoretic separation of microalgae: the role of nanoparticles and polymer binder in harvesting biofuel

Pey Yi Toh; Bee Wah Ng; Chi Han Chong; A.L. Ahmad; Ji-Won Yang; Chan Juinn Chieh Derek; JitKang Lim

Magnetophoretic separation of Chlorella sp. microalgal biomass is proven to be a feasible downstream processing technology for biofuel production. Kinetic study of cells separation in real time reveals the major steps involved for each stage of low gradient magnetic separation (LGMS) with field gradient (∇B) less than 80 T m−1. Transmission and scanning electron microscopy (TEM & SEM) together with Fourier transforms infrared (FTIR) spectra analysis are employed to confirm the full attachment of surface functionalized iron oxide nanoparticles (SF-IONPs) onto microalgal cells and how the particles distributed on the cells surfaces. From the cross section TEM images of cells, IONPs shown the tendency to be internalized into Chlorella sp. cells but not affect the biofuel quality.


Langmuir | 2012

Electrosteric Stabilization and Its Role in Cooperative Magnetophoresis of Colloidal Magnetic Nanoparticles

Swee Pin Yeap; A.L. Ahmad; Boon Seng Ooi; JitKang Lim

A detailed study on the conflicting role that colloid stability plays in magnetophoresis is presented. Magnetic iron oxide particles (MIOPs) that were sterically stabilized via surface modification with poly(sodium 4-styrene sulfonate) of different molecular weights (i.e., 70 and 1000 kDa) were employed as our model system. Both sedimentation kinetics and quartz crystal microbalance with dissipation (QCM-D) measurements suggested that PSS 70 kDa is a better stabilizer as compared to PSS 1000 kDa. This observation is mostly attributed to the bridging flocculation of PSS 1000 kDa decorated MIOPs originated from the extended polymeric conformation layer. Later, a lab-scale high gradient magnetic separation (HGMS) device was designed to study the magnetophoretic collection of MIOPs. Our experimental results revealed that the more colloidally stable the MIOP suspension is, the harder it is to be magnetically isolated by HGMS. At 50 mg/L, naked MIOPs without coating can be easily captured by HGMS at separation efficiency up to 96.9 ± 2.6%. However, the degree of separation dropped quite drastically to 83.1 ± 1.2% and 67.7 ± 4.6%, for MIOPs with PSS 1000k and PSS 70k coating, respectively. This observation clearly implies that polyelectrolyte coating that was usually employed to electrosterically stabilize a colloidal system in turn compromises the magnetic isolation efficiency. By artificially destroying the colloidal stability of the MIOPs with ionic strength increment, the ability for HGMS to recover the most stable suspension (i.e., PSS 70k-coated MIOPs) increased to >86% at 100 mM monovalent ion (Na(+)) or at 10 mM divalent ion (Ca(2+)). This observation has verified the conflicting role of colloidal stability in magnetophoretic separation.


Korean Journal of Chemical Engineering | 2014

Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles

Nam Kyu Kang; Bong-Soo Lee; Gang-Guk Choi; Myounghoon Moon; Min S. Park; JitKang Lim; Ji-Won Yang

Ability to increase the lipid production in microalgae is one of the heavily sought-after ideas to improve the economic feasibility of microalgae-derived transportation fuels for commercial applications. We used the oxidative stress by TiO2 nanoparticles, a well-known photocatalyst, to induce lipid production in microalgae. Chlorella vulgaris UTEX 265 was cultivated under various concentrations of TiO2 ranging from 0.1 to 5 g/L under UV-A illumination. Maximum specific growth rate was affected in responding to TiO2 concentrations. In the presence of UV-A, chlorophyll concentration was decreased at the highest concentration of TiO2 (5 g/L TiO2) by oxidative stress. The fatty acid ethyl ester (FAME) composition analysis suggested that oxidative stress causes the accumulation and decomposition of lipids. The highest FAME productivity was 18.2 g/L/d under low concentrations of TiO2 (0.1 g/L) and a short induction time (two days). The controlled condition of TiO2/UV-A inducing oxidative stress (0.1 g/L TiO2 and two days induction) could be used to increase the lipid productivity of C. vulgaris UTEX 265. Our results show the possibility of modulating the lipid induction process through oxidative stress with TiO2/UV-A.


Journal of Applied Phycology | 2015

Influences of diatom frustule morphologies on protein adsorption behavior

Guat Wei Lim; JitKang Lim; A.L. Ahmad; Derek Juinn Chieh Chan

Diatom frustules are a potential protein adsorbent substitute for conventional silica to address synthesis limitations of synthetic silica particles such as high energy consumption, long synthesis duration, and usage of toxic compounds. Diatom frustules have been used in many applications including separation of heavy metals, enzyme immobilization, and drug delivery; however, research into diatom frustules as a substrate for selective protein adsorption is limited only to functionalized frustules as a general adsorbent. Hence, in this paper, the morphology of diatom frustules and their protein adsorption were studied. The protein adsorption experiments were conducted using three different diatom frustules, namely, Thalassiosira weissflogii, Navicula sp., and diatomaceous earth (DE). Bovine serum albumin and lysozyme were used as model proteins. The surface chemistry of diatom frustules and protein was manipulated to investigate the interplay between surface charge and adsorption capacity. The adsorption behavior was further evaluated and is discussed through isotherm model and kinetic fitting. The result revealed that among these three diatom frustules, the centric diatom, T. weissflogii frustules have the highest adsorption capability. This can be attributed to their morphology with larger surface area, pore volume, and the presence of silanol groups. Besides that, the kinetic and isotherm model fitting indicate that protein adsorption on these three diatom frustules is a monolayer chemisorption. These results indicate the possibility of diatom frustules as a potential substrate in immunoassay applications.


Journal of Colloid and Interface Science | 2014

Magnetophoresis of iron oxide nanoparticles at low field gradient: the role of shape anisotropy.

JitKang Lim; Swee Pin Yeap; Chee Hoe Leow; Pey Yi Toh; S.C. Low

Magnetophoresis of iron oxide magnetic nanoparticle (IOMNP) under low magnetic field gradient (<100 T/m) is significantly enhanced by particle shape anisotropy. This unique feature of magnetophoresis is influenced by the particle concentration and applied magnetic field gradient. By comparing the nanosphere and nanorod magnetophoresis at different concentration, we revealed the ability for these two species of particles to achieve the same separation rate by adjusting the field gradient. Under cooperative magnetophoresis, the nanorods would first go through self- and magnetic field induced aggregation followed by the alignment of the particle clusters formed with magnetic field. Time scale associated to these two processes is investigated to understand the kinetic behavior of nanorod separation under low field gradient. Surface functionalization of nanoparticles can be employed as an effective strategy to vary the temporal evolution of these two aggregation processes which subsequently influence the magnetophoretic separation time and rate.


Journal of Colloid and Interface Science | 2009

Optical and electron microscopy studies of Schiller layer formation and structure.

Dorothy Farrell; Cindi L. Dennis; JitKang Lim; Sara A. Majetich

Iridescent Schiller layers were prepared by centrifugation of beta-FeOOH sols with an initial particle concentration of 10(14) particles/mL, reducing the Schiller layer formation time from over 2 months to 3 weeks. The formation and structure of the Schiller layers were investigated using optical and transmission electron microscopy. Microscopy studies revealed the self-assembly to proceed by the formation of two-dimensional particle arrays followed by the stacking of these arrays to form the final iridescent state. Varying the pH showed that Schiller layer formation occurs only in the pH range 1.4-2.0, indicating that electrostatic interactions play a pivotal role in the self-assembly. Decreasing the particle concentration of the sols was found to inhibit the assembly. DLVO theory and order-disorder phase transition models were found to be insufficient to accurately model the experimental behavior. Several approaches were investigated in an attempt to make ferrimagnetic arrays from the Schiller layers. The most promising was via electron beam irradiation, which transforms the beta-FeOOH into gamma-Fe(2)O(3) without altering the shape of the nanorods.


ACS Applied Materials & Interfaces | 2014

Directed Assembly of Bifunctional Silica–Iron Oxide Nanocomposite with Open Shell Structure

Hui Xin Che; Swee Pin Yeap; Mohamed Syazwan Osman; A.L. Ahmad; JitKang Lim

The synthesis of nanocomposite with controlled surface morphology plays a key role for pollutant removal from aqueous environments. The influence of the molecular size of the polyelectrolyte in synthesizing silica-iron oxide core-shell nanocomposite with open shell structure was investigated by using dynamic light scattering, atomic force microscopy, and quartz crystal microbalance with dissipation (QCM-D). Here, poly(diallydimethylammonium chloride) (PDDA) was used to promote the attachment of iron oxide nanoparticles (IONPs) onto the silica surface to assemble a nanocomposite with magnetic and catalytic bifunctionality. High molecular weight PDDA tended to adsorb on silica colloid, forming a more extended conformation layer than low molecular weight PDDA. Subsequent attachment of IONPs onto this extended PDDA layer was more randomly distributed, forming isolated islands with open space between them. By taking amoxicillin, an antibiotic commonly found in pharmaceutical waste, as the model system, better removal was observed for silica-iron oxide nanocomposite with a more extended open shell structure.

Collaboration


Dive into the JitKang Lim's collaboration.

Top Co-Authors

Avatar

A.L. Ahmad

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar

Swee Pin Yeap

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar

Sara A. Majetich

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

S.C. Low

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar

Sim Siong Leong

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar

Hui Xin Che

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar

Pey Yi Toh

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar

Robert D. Tilton

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

B.S. Ooi

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar

Frederick Lanni

Carnegie Mellon University

View shared research outputs
Researchain Logo
Decentralizing Knowledge