Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiu-Chang Zhong is active.

Publication


Featured researches published by Jiu-Chang Zhong.


Circulation | 2010

Angiotensin-Converting Enzyme 2 Suppresses Pathological Hypertrophy, Myocardial Fibrosis, and Cardiac Dysfunction

Jiu-Chang Zhong; Ratnadeep Basu; Danny Guo; Fung L. Chow; Simon Byrns; Manfred Schuster; Hans Loibner; Xiuhua Wang; Josef M. Penninger; Zamaneh Kassiri; Gavin Y. Oudit

Background— Angiotensin-converting enzyme 2 (ACE2) is a pleiotropic monocarboxypeptidase capable of metabolizing several peptide substrates. We hypothesized that ACE2 is a negative regulator of angiotensin II (Ang II)–mediated signaling and its adverse effects on the cardiovascular system. Methods and Results— Ang II infusion (1.5 mg · kg−1 · d−1) for 14 days resulted in worsening cardiac fibrosis and pathological hypertrophy in ACE2 knockout (Ace2−/y) mice compared with wild-type (WT) mice. Daily treatment of Ang II–infused wild-type mice with recombinant human ACE2 (rhACE2; 2 mg · kg−1 · d−1 IP) blunted the hypertrophic response and expression of hypertrophy markers and reduced Ang II–induced superoxide production. Ang II–mediated myocardial fibrosis and expression of procollagen type I&agr;1, procollagen type III&agr;1, transforming growth factor-&bgr;1, and fibronectin were also suppressed by rhACE2. Ang II–induced diastolic dysfunction was inhibited by rhACE2 in association with reduced plasma and myocardial Ang II and increased plasma Ang 1-7 levels. rhACE2 treatment inhibited Ang II–mediated activation of protein kinase C-&agr; and protein kinase C-&bgr;1 protein levels and phosphorylation of the extracellular signal-regulated 1/2, Janus kinase 2, and signal transducer and activator of transcription 3 signaling pathways in wild-type mice. A subpressor dose of Ang II (0.15 mg · kg−1 · d−1) resulted in a milder phenotype that was strikingly attenuated by rhACE2 (2 mg · kg−1 · d−1 IP). In adult ventricular cardiomyocytes and cardiofibroblasts, Ang II–mediated superoxide generation, collagen production, and extracellular signal-regulated 1/2 signaling were inhibited by rhACE2 in an Ang 1-7–dependent manner. Importantly, rhACE2 partially prevented the development of dilated cardiomyopathy in pressure-overloaded wild-type mice. Conclusions— Elevated Ang II induced hypertension, myocardial hypertrophy, fibrosis, and diastolic dysfunction, which were exacerbated by ACE2 deficiency, whereas rhACE2 attenuated Ang II– and pressure-overload–induced adverse myocardial remodeling. Hence, ACE2 is an important negative regulator of Ang II–induced heart disease and suppresses adverse myocardial remodeling.


Diabetes | 2010

Human Recombinant ACE2 Reduces the Progression of Diabetic Nephropathy

Gavin Y. Oudit; George C. Liu; Jiu-Chang Zhong; Ratnadeep Basu; Fung L. Chow; Joyce Zhou; Hans Loibner; Evelyne Janzek; Manfred Schuster; Josef M. Penninger; Andrew M. Herzenberg; Zamaneh Kassiri; James W. Scholey

OBJECTIVE Diabetic nephropathy is one of the most common causes of end-stage renal failure. Inhibition of ACE2 function accelerates diabetic kidney injury, whereas renal ACE2 is downregulated in diabetic nephropathy. We examined the ability of human recombinant ACE2 (hrACE2) to slow the progression of diabetic kidney injury. RESEARCH DESIGN AND METHODS Male 12-week-old diabetic Akita mice (Ins2WT/C96Y) and control C57BL/6J mice (Ins2WT/WT) were injected daily with placebo or with rhACE2 (2 mg/kg, i.p.) for 4 weeks. Albumin excretion, gene expression, histomorphometry, NADPH oxidase activity, and peptide levels were examined. The effect of hrACE2 on high glucose and angiotensin II (ANG II)–induced changes was also examined in cultured mesangial cells. RESULTS Treatment with hrACE2 increased plasma ACE2 activity, normalized blood pressure, and reduced the urinary albumin excretion in Akita Ins2WT/C96Y mice in association with a decreased glomerular mesangial matrix expansion and normalization of increased α-smooth muscle actin and collagen III expression. Human recombinant ACE2 increased ANG 1–7 levels, lowered ANG II levels, and reduced NADPH oxidase activity. mRNA levels for p47phox and NOX2 and protein levels for protein kinase Cα (PKCα) and PKCβ1 were also normalized by treatment with hrACE2. In vitro, hrACE2 attenuated both high glucose and ANG II–induced oxidative stress and NADPH oxidase activity. CONCLUSIONS Treatment with hrACE2 attenuates diabetic kidney injury in the Akita mouse in association with a reduction in blood pressure and a decrease in NADPH oxidase activity. In vitro studies show that the protective effect of hrACE2 is due to reduction in ANG II and an increase in ANG 1–7 signaling.


Hypertension | 2011

Prevention of angiotensin II-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2.

Jiu-Chang Zhong; Danny Guo; Christopher B. Chen; Wang Wang; Manfred Schuster; Hans Loibner; Josef M. Penninger; James W. Scholey; Zamaneh Kassiri; Gavin Y. Oudit

Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase capable of metabolizing angiotensin (Ang) II into Ang 1 to 7. We hypothesized that ACE2 is a negative regulator of Ang II signaling and its adverse effects on the kidneys. Ang II infusion (1.5 mg/kg−1/d−1) for 4 days resulted in higher renal Ang II levels and increased nicotinamide adenine dinucleotide phosphate oxidase activity in ACE2 knockout (Ace2−/y) mice compared to wild-type mice. Expression of proinflammatory cytokines, interleukin-1&bgr; and chemokine (C-C motif) ligand 5, were increased in association with greater activation of extracellular-regulated kinase 1/2 and increase of protein kinase C-&agr; levels. These changes were associated with increased expression of fibrosis-associated genes (&agr;-smooth muscle actin, transforming growth factor-&bgr;, procollagen type I&agr;1) and increased protein levels of collagen I with histological evidence of increased tubulointerstitial fibrosis. Ang II-infused wild-type mice were then treated with recombinant human ACE2 (2 mg/kg−1/d−1, intraperitoneal). Daily treatment with recombinant human ACE2 reduced Ang II-induced pressor response and normalized renal Ang II levels and oxidative stress. These changes were associated with a suppression of Ang II–mediated activation of extracellular-regulated kinase 1/2 and protein kinase C pathway and Ang II–mediated renal fibrosis and T-lymphocyte-mediated inflammation. We conclude that loss of ACE2 enhances renal Ang II levels and Ang II-induced renal oxidative stress, resulting in greater renal injury, whereas recombinant human ACE2 prevents Ang II-induced hypertension, renal oxidative stress, and tubulointerstitial fibrosis. ACE2 is an important negative regulator of Ang II-induced renal disease and enhancing ACE2 action may have therapeutic potential for patients with kidney disease.


Circulation-heart Failure | 2009

Loss of Angiotensin-Converting Enzyme 2 Accelerates Maladaptive Left Ventricular Remodeling in Response to Myocardial Infarction

Zamaneh Kassiri; Jiu-Chang Zhong; Danny Guo; Ratnadeep Basu; Xiuhua Wang; Peter Liu; James W. Scholey; Josef M. Penninger; Gavin Y. Oudit

Background—Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase that metabolizes Ang II into Ang 1-7, thereby functioning as a negative regulator of the renin-angiotensin system. We hypothesized that ACE2 deficiency may compromise the cardiac response to myocardial infarction (MI). Methods and Results—In response to MI (induced by left anterior descending artery ligation), there was a persistent increase in ACE2 protein in the infarct zone in wild-type mice, whereas loss of ACE2 enhanced the susceptibility to MI, with increased mortality, infarct expansion, and adverse ventricular remodeling characterized by ventricular dilation and systolic dysfunction. In ACE2-deficient hearts, elevated myocardial levels of Ang II and decreased levels of Ang 1-7 in the infarct-related zone was associated with increased production of reactive oxygen species. ACE2 deficiency leads to increased matrix metalloproteinase (MMP) 2 and MMP9 levels with MMP2 activation in the infarct and peri-infarct regions, as well as increased gelatinase activity leading to a disrupted extracellular matrix structure after MI. Loss of ACE2 also leads to increased neutrophilic infiltration in the infarct and peri-infarct regions, resulting in upregulation of inflammatory cytokines, interferon-γ, interleukin-6, and the chemokine, monocyte chemoattractant protein-1, as well as increased phosphorylation of ERK1/2 and JNK1/2 signaling pathways. Treatment of Ace2−/y-MI mice with irbesartan, an AT1 receptor blocker, reduced nicotinamide-adenine dinucleotide phosphate oxidase activity, infarct size, MMP activation, and myocardial inflammation, ultimately resulting in improved post-MI ventricular function. Conclusions—We conclude that loss of ACE2 facilitates adverse post-MI ventricular remodeling by potentiation of Ang II effects by means of the AT1 receptors, and supplementing ACE2 can be a potential therapy for ischemic heart disease.


Circulation-heart Failure | 2009

Loss of ACE2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction

Zamaneh Kassiri; Jiu-Chang Zhong; Danny Guo; Rathnadeep Basu; Xiuhua Wang; Peter Liu; James W. Scholey; Josef M. Penninger; Gavin Y. Oudit

Background—Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase that metabolizes Ang II into Ang 1-7, thereby functioning as a negative regulator of the renin-angiotensin system. We hypothesized that ACE2 deficiency may compromise the cardiac response to myocardial infarction (MI). Methods and Results—In response to MI (induced by left anterior descending artery ligation), there was a persistent increase in ACE2 protein in the infarct zone in wild-type mice, whereas loss of ACE2 enhanced the susceptibility to MI, with increased mortality, infarct expansion, and adverse ventricular remodeling characterized by ventricular dilation and systolic dysfunction. In ACE2-deficient hearts, elevated myocardial levels of Ang II and decreased levels of Ang 1-7 in the infarct-related zone was associated with increased production of reactive oxygen species. ACE2 deficiency leads to increased matrix metalloproteinase (MMP) 2 and MMP9 levels with MMP2 activation in the infarct and peri-infarct regions, as well as increased gelatinase activity leading to a disrupted extracellular matrix structure after MI. Loss of ACE2 also leads to increased neutrophilic infiltration in the infarct and peri-infarct regions, resulting in upregulation of inflammatory cytokines, interferon-γ, interleukin-6, and the chemokine, monocyte chemoattractant protein-1, as well as increased phosphorylation of ERK1/2 and JNK1/2 signaling pathways. Treatment of Ace2−/y-MI mice with irbesartan, an AT1 receptor blocker, reduced nicotinamide-adenine dinucleotide phosphate oxidase activity, infarct size, MMP activation, and myocardial inflammation, ultimately resulting in improved post-MI ventricular function. Conclusions—We conclude that loss of ACE2 facilitates adverse post-MI ventricular remodeling by potentiation of Ang II effects by means of the AT1 receptors, and supplementing ACE2 can be a potential therapy for ischemic heart disease.


Circulation Research | 2012

Loss of Angiotensin-Converting Enzyme-2 Exacerbates Diabetic Cardiovascular Complications and Leads to Systolic and Vascular Dysfunction A Critical Role of the Angiotensin II/AT1 Receptor Axis

Vaibhav B. Patel; Sreedhar Bodiga; Ratnadeep Basu; Subhash K. Das; Wang Wang; Zuocheng Wang; Jennifer Lo; Maria B. Grant; Jiu-Chang Zhong; Zamaneh Kassiri; Gavin Y. Oudit

Rationale: Diabetic cardiovascular complications are reaching epidemic proportions. Angiotensin-converting enzyme-2 (ACE2) is a negative regulator of the renin-angiotensin system. We hypothesize that loss of ACE2 exacerbates cardiovascular complications induced by diabetes. Objective: To define the role of ACE2 in diabetic cardiovascular complications. Methods and Results: We used the well-validated Akita mice, a model of human diabetes, and generated double-mutant mice using the ACE2 knockout (KO) mice (Akita/ACE2−/y). Diabetic state was associated with increased ACE2 in Akita mice, whereas additional loss of ACE2 in these mice leads to increased plasma and tissue angiotensin II levels, resulting in systolic dysfunction on a background of impaired diastolic function. Downregulation of SERCA2 and lipotoxicity were equivalent in Akita and Akita/ACE2KO hearts and are likely mediators of the diastolic dysfunction. However, greater activation of protein kinase C and loss of Akt and endothelial nitric oxide synthase phosphorylation occurred in the Akita/ACE2KO hearts. Systolic dysfunction in Akita/ACE2KO mice was linked to enhanced activation of NADPH oxidase and metalloproteinases, resulting in greater oxidative stress and degradation of the extracellular matrix. Impaired flow-mediated dilation in vivo correlated with increased vascular oxidative stress in Akita/ACE2KO mice. Treatment with the AT1 receptor blocker, irbesartan rescued the systolic dysfunction, normalized altered signaling pathways, flow-mediated dilation, and the increased oxidative stress in the cardiovascular system. Conclusions: Loss of ACE2 disrupts the balance of the renin-angiotensin system in a diabetic state and leads to an angiotensin II/AT1 receptor-dependent systolic dysfunction and impaired vascular function. Our study demonstrates that ACE2 serves as a protective mechanism against diabetes-induced cardiovascular complications.


Hypertension | 2012

Cardioprotective Effects Mediated by Angiotensin II Type 1 Receptor Blockade and Enhancing Angiotensin 1-7 in Experimental Heart Failure in Angiotensin-Converting Enzyme 2–Null Mice

Vaibhav B. Patel; Sreedhar Bodiga; Dong Fan; Subhash K. Das; Zuocheng Wang; Wang Wang; Ratnadeep Basu; Jiu-Chang Zhong; Zamaneh Kassiri; Gavin Y. Oudit

Loss of angiotensin (Ang)-converting enzyme 2 (ACE2) and inability to metabolize Ang II to Ang 1-7 perpetuate the actions of Ang II after biomechanical stress and exacerbate early adverse myocardial remodeling. Ang receptor blockers are known to antagonize the effect of Ang II by blocking Ang II type 1 receptor (AT1R) and also by upregulating the ACE2 expression. We directly compare the benefits of AT1R blockade versus enhancing Ang 1-7 action in pressure-overload–induced heart failure in ACE2 knockout mice. AT1R blockade and Ang 1-7 both resulted in marked recovery of systolic dysfunction in pressure-overloaded ACE2-null mice. Similarly, both therapies attenuated the increase in NADPH oxidase activation by downregulating the expression of Nox2 and p47phox subunits and also by limiting the p47phox phosphorylation. Biomechanical stress-induced increase in protein kinase C-&agr; expression and phosphorylation of extracellular signal–regulated kinase 1/2, signal transducer and activator of transcription 3, Akt, and glycogen synthase kinase 3&bgr; were normalized by irbesartan and Ang 1-7. Ang receptor blocker and Ang 1-7 effectively reduced matrix metalloproteinase 2 activation and matrix metalloproteinase 9 levels. Ang II–mediated cellular effects in cultured adult cardiomyocytes and cardiofibrolasts isolated from pressure-overloaded ACE2-null hearts were inhibited to similar degree by AT1R blockade and stimulation with Ang 1-7. Thus, treatment with the AT1R blocker irbesartan and Ang 1-7 prevented the cardiac hypertrophy and improved cardiac remodeling in pressure-overloaded ACE2-null mice by suppressing NADPH oxidase and normalizing pathological signaling pathways.


PLOS ONE | 2012

ACE2 Deficiency Enhances Angiotensin II-Mediated Aortic Profilin-1 Expression, Inflammation and Peroxynitrite Production

Hai-Yan Jin; Bei Zhou Song; Gavin Y. Oudit; Sandra T. Davidge; Huimin Yu; Yanyan Jiang; Pingjin Gao; Dingliang Zhu; Guang Ning; Zamaneh Kassiri; Josef M. Penninger; Jiu-Chang Zhong

Inflammation and oxidative stress play a crucial role in angiotensin (Ang) II-mediated vascular injury. Angiotensin-converting enzyme 2 (ACE2) has recently been identified as a specific Ang II-degrading enzyme but its role in vascular biology remains elusive. We hypothesized that loss of ACE2 would facilitate Ang II-mediated vascular inflammation and peroxynitrite production. 10-week wildtype (WT, Ace2+/y) and ACE2 knockout (ACE2KO, Ace2−/y) mice received with mini-osmotic pumps with Ang II (1.5 mg.kg−1.d−1) or saline for 2 weeks. Aortic ACE2 protein was obviously reduced in WT mice in response to Ang II related to increases in profilin-1 protein and plasma levels of Ang II and Ang-(1–7). Loss of ACE2 resulted in greater increases in Ang II-induced mRNA expressions of inflammatory cytokines monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-1β, and IL-6 without affecting tumor necrosis factor-α in aortas of ACE2KO mice. Furthermore, ACE2 deficiency led to greater increases in Ang II-mediated profilin-1 expression, NADPH oxidase activity, and superoxide and peroxynitrite production in the aortas of ACE2KO mice associated with enhanced phosphorylated levels of Akt, p70S6 kinase, extracellular signal-regulated kinases (ERK1/2) and endothelial nitric oxide synthase (eNOS). Interestingly, daily treatment with AT1 receptor blocker irbesartan (50 mg/kg) significantly prevented Ang II-mediated aortic profilin-1 expression, inflammation, and peroxynitrite production in WT mice with enhanced ACE2 levels and the suppression of the Akt-ERK-eNOS signaling pathways. Our findings reveal that ACE2 deficiency worsens Ang II-mediated aortic inflammation and peroxynitrite production associated with the augmentation of profilin-1 expression and the activation of the Akt-ERK-eNOS signaling, suggesting potential therapeutic approaches by enhancing ACE2 action for patients with vascular diseases.


Regulatory Peptides | 2011

Telmisartan attenuates aortic hypertrophy in hypertensive rats by the modulation of ACE2 and profilin-1 expression

Jiu-Chang Zhong; Jia-ying Ye; Hai-Yan Jin; Xi Yu; Hui-min Yu; Dingliang Zhu; Pingjin Gao; Dongyang Huang; Manfred Shuster; Hans Loibner; Jun-min Guo; Xi-yong Yu; Bing-xiu Xiao; Zhao-hui Gong; Josef M. Penninger; Gavin Y. Oudit

Profilin-1 has recently been linked to vascular hypertrophy and remodeling. Here, we assessed the hypothesis that angiotensin (Ang) II type I receptor antagonist telmisartan improves vascular hypertrophy by modulation of expression of profilin-1 and angiotensin-converting enzyme 2 (ACE2). Ten-week-old male spontaneously hypertensive rats (SHR) were received oral administration of telmisartan (5 or 10mg/kg; daily) or saline for 10 weeks. Compared with Wistar-Kyoto (WKY) rats, there were marked increases in systolic blood pressure and profilin-1 expression and reduced ACE2 and peroxisome proliferator activated receptor-γ (PPARγ) levels in aorta of SHR, associated with elevated extracellular-signal regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) phosphorylation signaling and aortic hypertrophy characterized with increased media thickness, which were strikingly reversed by telmisartan. In cultured human umbilical artery smooth muscle cells (HUASMCs), Ang II induced a dose-dependent increase in profilin-1 expression, along with decreased ACE2 protein expression and elevated ERK1/2 and JNK phosphorylation. In addition, blockade of ERK1/2 or JNK by either specific inhibitor was able to abolish Ang II-induced ACE2 downregulation and profilin-1 upregulation in HUASMCs. Importantly, treatment with telmisartan (1 or 10 μM) or recombinant human ACE2 (2mg/ml) largely ameliorated Ang II-induced profilin-1 expression and ERK1/2 and JNK phosphorylation and augmented PPARγ expression in the cultured HUASMCs. In conclusion, telmisartan treatment attenuates vascular hypertrophy in SHR by the modulation of ACE2 and profilin-1 expression with a marked reversal of ERK1/2 and JNK phosphorylation signaling pathways.


Hypertension | 2014

Angiotensin-Converting Enzyme 2 Is a Critical Determinant of Angiotensin II–Induced Loss of Vascular Smooth Muscle Cells and Adverse Vascular Remodeling

Vaibhav B. Patel; Jiu-Chang Zhong; Dong Fan; Ratnadeep Basu; Jude S. Morton; Nirmal Parajuli; Michael Sean McMurtry; Sandra T. Davidge; Zamaneh Kassiri; Gavin Y. Oudit

Angiotensin-converting enzyme (ACE) 2 is a key negative regulator of the renin–angiotensin system and metabolizes angiotensin II (Ang II) into Ang 1 to 7. Ang II is a vasoactive peptide, which plays an important role in vascular disease. The objective of the present study was to define the role of ACE2 in pathological vascular remodeling. We found upregulation of ACE2 in dilated human aorta with bicuspid aortic valve and in murine aorta in response to Ang II. Ex vivo pressure myography showed increased vascular stiffness in ACE2 knockout (KO) mesenteric arteries in response to Ang II (1.5 mg/kg per day) and with aging. Histological analyses revealed reduced media-to-lumen ratio in ACE2KO mesenteric arteries with loss of vascular smooth muscle cells. Aortic vascular smooth muscle cells from ACE2KO mice showed markedly increased reactive oxygen species and apoptosis in response to Ang II along with increased cleaved caspase-3 and cleaved caspase-8 levels in the ACE2KO aorta. Ang II type 1 receptor blockade and Ang 1 to 7 supplementation prevented the increase in Ang II–induced reactive oxygen species and apoptotic cell death. In the aorta, Ang II resulted in thoracic and abdominal aortic dilation with loss of vascular smooth muscle cell density in ACE2KO aorta as revealed by &agr;-smooth muscle actin, calponin staining, and electron microscopy with increased promatrix metalloproteinase 2, matrix metalloproteinase 2, and matrix metalloproteinase 9 levels. ACE2 is upregulated in vascular diseases, and ACE2 deficiency exacerbates Ang II–mediated vascular remodeling driven by increased reactive oxygen species and vascular smooth muscle cell apoptosis. In conclusion, the key counter-regulatory role of ACE2 against an activated renin–angiotensin system provides novel insights into the role of ACE2 in vascular diseases.

Collaboration


Dive into the Jiu-Chang Zhong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhen-Zhou Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Bei Song

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Hai-Yan Jin

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Pingjin Gao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying-Le Xu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Josef M. Penninger

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dingliang Zhu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Lai-Jiang Chen

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge