Jiu-yu Li
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiu-yu Li.
Colloids and Surfaces B: Biointerfaces | 2013
Zhao-dong Liu; Jiu-yu Li; Jun Jiang; Zhi-neng Hong; Ren-kou Xu
We investigated the adhesion of Escherichia coli to α-Fe2O3 and γ-Al2O3 and the effects of adhesion on the surface properties of the oxides in batch experiments, where we conducted potentiometric titration, zeta potential measurements, and FTIR spectroscopy. The adhesion isotherms fitted a Langmuir equation well. γ-Al2O3 had a higher adhesion capacity than α-Fe2O3 because of the higher positive charge on γ-Al2O3. The adhesion of E. coli to Fe/Al oxides decreased with increasing pH. Adhesion increased with increasing NaCl concentration, reaching its maximum at 0.05M for α-Fe2O3 and at 0.1M for γ-Al2O3, after which it decreased with further increases in NaCl concentration. Therefore, the electrostatic force plays an important role in the adhesion of E. coli to Fe/Al oxides. The zeta potential-pH curves of the binary-system fell between that for bacteria and those for Fe/Al oxides. Thus, overlapping of the diffuse layers of the electric double layers on the negatively-charged E. coli and positively-charged Fe/Al oxides reduced the effective surface charge density of the minerals and bacteria. E. coli adhesion decreased the point of zero salt effect and the isoelectric point of the Fe/Al oxides. The FTIR spectra indicated that non-electrostatic force also contributed to the interaction between E. coli and Fe/Al oxides, in addition to the electrostatic force between them.
Geomicrobiology Journal | 2015
Zhao-dong Liu; Zhi-neng Hong; Jiu-yu Li; Jun Jiang; Ren-kou Xu
The adhesion of Escherchia coli (E. coli) to the colloids of three variable charge soils and its effect on surface charge properties and potassium adsorption of these soil colloids were investigated. The adhesion isotherms of E. coli by soil colloids can be described using the Langmuir equation. The amount of E. coli adhered by the soil colloids varied with soil type and followed the order: Ultisol from Guangxi > Oxisol from Yunnan > Ultisol from Jiangxi. The iron and aluminum oxide contents and CECs of the soils are the important factors affecting the adhesion of E. coli to soil colloids. The relatively lower iron and aluminum oxide contents and higher CEC of the Ultisol from Jiangxi led to the lower adhesion of E. coli to the soil colloids compared to the Ultisol from Guangxi and the Oxisol from Yunnan. The amount of E. coli adhered to the soil colloids decreased with increasing pH, which was consistent with the results predicted from the DLVO theory. E. coli adhesion made the zeta potential of the soil colloids more negative and reduced the isoelectric point of the soil colloids, suggesting that E. coli decreased the surface positive charge and increased negative charge of the soil colloids. In addition, E. coli adhesion increased K+ adsorption by the soil colloids. Therefore, bacterial adhesion improves the fertility of variable charge soils by increasing soil CEC because the CECs of variable charge soils are usually low.
Colloids and Surfaces B: Biointerfaces | 2016
Zhi-neng Hong; Jiu-yu Li; Jun Jiang; Zhao-li Li; Ren-kou Xu
Sorption and desorption of phosphate (P) on Fe and Al (hydr)oxides may be affected by bacteria in soils because their ubiquitous and strong interactions. The role of Bacillus subtilis and Pseudomonas fluorescens in adsorption of P on gibbsite (γ-AlOOH) was systematically investigated under a wide range of conditions by combining in-situ attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy with batch macroscopic experiments. In-situ ATR-FTIR observations of the ternary systems (bacteria, P, and gibbsite) showed simultaneous desorption of P from, and adhesion of the bacteria to, gibbsite, indicating a competition between the two for surface sites. Batch desorption experiments showed that bacteria could mobilize the P from gibbsite into solution, and macroscopic adsorption data showed that the amount of P adsorbed on the bacteria-gibbsite complex was less than that on gibbsite alone over durations from 0h to 26h, concentrations of P from 0.1mM to 2.0mM, pH from 5 to 8, and ionic strength from 0M to 0.5M, suggesting that bacteria inhibit the adsorption of P on gibbsite. The degree of inhibition increased with the number of bacteria in the system and was significantly but non-linearly correlated with the decline in the positive charge on gibbsite induced by the bacteria. Therefore, competition for suitable sites on the surface of gibbsite between P and the bacteria and reduction in the positive charge on the surface of gibbsite induced by bacteria are proposed as two important mechanisms that inhibit P adsorption. These findings highlight the role of bacteria in regulating the availability of P to plants and its mobility in natural environments.
Journal of Agricultural and Food Chemistry | 2017
Ren-yong Shi; Zhi-neng Hong; Jiu-yu Li; Jun Jiang; M. Abdulaha-Al Baquy; Ren-kou Xu; Wei Qian
The effects and underlying mechanisms of crop residue-derived biochars on the pH buffering capacity (pHbuff) of an acidic Ultisol, with low pHbuff, were investigated through indoor incubation and simulated acidification experiments. The incorporation of biochars significantly increased soil pHbuff with the magnitude of the increase dependent on acid buffering capacity of the biochar incorporated to the soil. Cation release, resulting from the protonation of carboxyl groups on biochar surfaces and the dissolution of carbonates, was the predominant mechanism responsible for the increase in soil pHbuff at pH 4.0-7.0 and accounted for >67% of the increased pHbuff. The reaction of protons with soluble silica (Si) in biochars derived from rice straw and corn stover also accounted for ∼20% of the pHbuff increase due to H3SiO4- precipitation. In conclusion, the incorporation of crop residue-derived biochars into acidic soils increased soil pHbuff with peanut stover biochar being the most effective biochar tested.
Journal of Environmental Sciences-china | 2017
Ren-yong Shi; Jiu-yu Li; Jun Jiang; Khalid Mehmood; Yuan Liu; Ren-kou Xu; Wei Qian
The chemical characteristics, element contents, mineral compositions, and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity, and higher Ca and Mg levels in biomass ashes, which made them particularly good at ameliorating effects on soil acidity. However, heavy metal contents, such as Cr, Cu, and Zn in the ashes, were relatively high. The incorporation of all ashes increased soil pH, exchangeable base cations, and available phosphorus, but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore, the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments.
Journal of Soils and Sediments | 2017
Chen-yang Xu; Ren-kou Xu; Jiu-yu Li; Kai-ying Deng
PurposeThe purpose of the present study is to examine the effect of phosphate on the aggregation kinetics of hematite and goethite nanoparticles.Materials and methodsThe dynamic light scattering method was used to study the aggregation kinetics of hematite and goethite nanoparticles.Results and discussionSpecific adsorption of phosphates could promote aggregation through charge neutralization at low P concentrations, stabilize the nanoparticle suspensions at medium P concentrations, and induce aggregation through charge screening by accompanying cations at high P concentrations. Two critical coagulation concentration (CCC) values were obtained in each system. In NaH2PO4, the goethite CCC at low phosphate concentrations was smaller than hematite and vice versa at high phosphate concentrations. Stronger phosphate adsorption by goethite rapidly changed the zeta potential from positive to negative at low phosphate concentrations, and the zeta potential became more negative at high phosphate concentrations. The clusters of hematite nanoparticles induced by phosphate adsorption had an open and looser structure. Solution pH and the phosphate adsorption mechanisms in NaH2PO4, KH2PO4, and Na3PO4 solutions affected zeta potential values and controlled the stability of hematite suspensions during aggregation. High pH and preference for non-protonated inner-sphere complexes in Na3PO4 solution decreased the zeta potential of positively charged hematite and promoted aggregation. Activation energies followed the order NaH2PO4 > KH2PO4 > Na3PO4 at low P concentrations. K+ was more effective than Na+ in promoting hematite aggregation due to the non-classical polarization of cations.ConclusionsPhosphate can enhance or inhibit the aggregation of hematite and goethite nanoparticles in suspensions by changing surface charge due to specific adsorption onto the particles. The phosphate-induced aggregation of the nanoparticles mainly depended on the initial concentration of phosphate.
Environmental Science and Pollution Research | 2014
Zhong-yi Li; Jiu-yu Li; Yuan Liu; Ren-kou Xu
The streaming potential has been wildly used in charged parallel plates, capillaries, and porous media. However, there have been few studies involving the ζ potential of clay soils based on streaming potential measurements. A laboratory apparatus was developed in this study to measure the streaming potential (ΔE) of bulk clay soils’ coupling coefficient (C) and cell resistance (R) of saturated granular soil samples. Excellent linearity of ΔE versus liquid pressure (ΔP) ensured the validity of measurements. The obtained parameters of C and R can be used to calculate the ζ potential of bulk soils. The results indicated that the ζ potentials measured by streaming potential method were significantly correlated with the ζ potentials of soil colloids determined by electrophoresis (r2 = 0.960**). Therefore, the streaming potential method can be used to study the ζ potentials of bulk clay soils. The absolute values of the ζ potentials of four soils followed the order: Ultisol from Jiangxi > Ultisol from Anhui > Oxisol from Guangdong > Oxisol from Hainan, and this was consistent with the cation exchange capacities of these soils. The type and concentration of electrolytes affected soil ζ potentials. The ζ potential became less negative with increased electrolyte concentration. The ζ potentials were more negative in monovalent than in divalent cationic electrolyte solutions because more divalent cations were distributed in the shear plane of the diffuse layer as counter-cations on the soil surfaces than monovalent cations at the same electrolyte concentration.
Journal of Soils and Sediments | 2016
Zhong-yi Li; Ren-kou Xu; Jiu-yu Li; Zhi-neng Hong
PurposeThis study was conducted in order to examine the effect of colloidal particles on electrochemical properties of charged larger size materials.Materials and methodsA self-made streaming potential apparatus was used to measure the zeta potentials of Fe/Al oxide-coated quartz. The effects of colloidal particles of kaolinite and montmorillonite on the electrochemical properties of Fe/Al oxide-coated quartz were investigated through comparing the difference in zeta potential of the coated quartz in electrolyte and clay suspension.Results and discussionThe change of zeta potentials of the coated quartz, when clay suspensions flowed through, increased with the increasing concentrations of kaolinite and montmorillonite and degree of coating with Fe/Al oxides, and decreased with increased ionic strength of the suspensions. Electrostatic attraction between clay colloids and the coated quartz was the key factor influencing the interaction between the oppositely charged particles. The deposition of colloidal particles of kaolinite and montmorillonite on coated quartz and the overlapping of the diffuse layers of electrical double layers between the oppositely charged particles were responsible for the change in zeta potential of Fe/Al oxide-coated quartz. The relative contribution of the deposition of clay particles to the change in zeta potential was greater than that of the overlapping of diffuse layers.ConclusionsWhen clay suspensions flowed through the saturated sand of Fe/Al oxide-coated quartz, both overlapping of diffuse layers between charged sand and clay particles and deposition of clay particles contributed to change of zeta potential of the coated quartz.
Environmental Science and Pollution Research | 2015
Jiu-yu Li; M. M. Masud; Zhong-yi Li; Ren-kou Xu
The acidity of Ultisols (pH <5) is detrimental to crop production. Technologies should be explored to promote base saturation and liming effect for amelioration of Ultisol pH. Column leaching experiments were conducted to investigate the amelioration effects of canola straw (CS) and peanut straw (PS) in single treatment and in combination whether with alkaline slag (AS) or with lime on Ultisol profile acidity. The treatment without liming materials was set as control, and the AS and lime in single treatment are set for comparison. Results indicated that all the liming materials increase soil profile pH and soil exchangeable base cations at the 0–40-cm depth, except that the lime had amelioration effect just on 0 to 15-cm profile. The amelioration effect of the liming materials on surface soil acidity was mainly dependent on the ash alkalinity in organic materials or acid neutralization capacity of inorganic materials. Specific adsorption of sulfate (SO42−) or organic anions, decarboxylation of organic acids/anions, and the association of H+ with organic anions induced a “liming effect” of crop residues and AS on subsoil acidity. Moreover, SO42− and chloride (Cl−) in PS, CS, and AS primarily induced base cations to move downward to subsoil and exchange with exchangeable aluminum (Al3+) and protons (H+). These anions also promoted the exchangeable Al to leach out of the soil profile. The CS was more effective than PS in decreasing soil acidity in the subsoil, which mainly resulted from higher sulfur (S) and Cl content in CS compared to PS. The CS combined with AS was the better amendment choice in practical agricultural systems.
Soil Science | 2014
Jiu-yu Li; Ren-kou Xu; Kai-ying Deng
Abstract Variably charged soils confer a different pattern of soil chemical properties compared with a homogeneously charged colloidal system. The relative contents of soil mineralogical constituents and their interaction play important roles in the variation of charge characteristics and other chemical properties of the soils. In this study, coating and simple mixing of iron (Fe)/aluminum (Al) hydroxides with kaolinite and an Alfisol subsoil were made for comparative study of their effect on the electrochemical and acidity properties of kaolinite and Alfisol subsoil after electrodialysis. Transmission electron microscopy and X-ray diffraction analyses indicated that Fe hydroxide coating was more effective than their mixing in physically blocking the kaolinite surface and decreasing the peak intensity of XRD for kaolinite. Coated Fe hydroxides were also more effective than the mixed ones in shifting zeta potential in a positive value direction, decreasing effective cation exchange capacity, and inhibiting acidification of kaolinite and Alfisol subsoil, whereas there was little difference between coated and mixed amorphous aluminum hydroxide (Al(OH)3). The effect of coated Fe/Al hydroxides on effective cation exchange capacity of electrodialyzed kaolinite and Alfisol subsoil varied irreversibly with ionic strength of the bathing solutions. All the results demonstrated that coatings of Fe/Al hydroxides could decrease effective negative charge and inhibit acidification of kaolinite and Alfisol subsoil mainly through two mechanisms: diffuse double-layer overlapping between oppositely charged particles and physical blocking of kaolinite and Alfisol subsoil during electrodialysis. Therefore, Fe/Al hydroxides can act as antiacidification agents in variably charged soils.