Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiumeng Liu is active.

Publication


Featured researches published by Jiumeng Liu.


Environmental Science & Technology | 2012

Contribution of Water-Soluble and Insoluble Components and Their Hydrophobic/Hydrophilic Subfractions to the Reactive Oxygen Species-Generating Potential of Fine Ambient Aerosols

Vishal Verma; Roberto Rico-Martínez; Neel Kotra; Laura E. King; Jiumeng Liu; Terry W. Snell; Rodney J. Weber

Relative contributions of water- and methanol-soluble compounds and their hydrophobic/hydrophilic subfractions to the ROS (reactive oxygen species)-generating potential of ambient fine aerosols (D(p) < 2.5 μm) are assessed. ROS-generating (or oxidative) potential of the particulate matter (PM) was measured by the dithiothreitol (DTT) assay. Particles were collected on quartz filters (N = 8) at an urban site near central Atlanta during January-February 2012 using a PM(2.5) high-volume sampler. Filter punches were extracted separately in both water and methanol. Hydrophobic and hydrophilic fractions were then subsequently segregated via a C-18 solid phase extraction column. The DTT assay response was significantly higher for the methanol extract, and for both extracts a substantial fraction of PM oxidative potential was associated with the hydrophobic compounds as evident from a substantial attenuation in DTT response after passing PM extracts through the C-18 column (64% for water and 83% for methanol extract; both median values). The DTT activities of water and methanol extracts were correlated with the water-soluble (R = 0.86) and water-insoluble organic carbon (R = 0.94) contents of the PM, respectively. Brown carbon (BrC), which predominantly represents the hydrophobic organic fraction (referred to as humic-like substances, HULIS), was also correlated with DTT activity in both the water (R = 0.78) and methanol extracts (R = 0.83). Oxidative potential was not correlated with any metals measured in the extracts. These findings suggest that the hydrophobic components of both water-soluble and insoluble organic aerosols substantially contribute to the oxidative properties of ambient PM. Further investigation of these hydrophobic organic compounds could help identify sources of a significant fraction of ambient aerosol toxicity.


Neurology | 2004

Repeated dosing of botulinum toxin type A for upper limb spasticity following stroke

Mark F. Gordon; A. Brashear; Elie P. Elovic; D. Kassicieh; Christina M. Marciniak; Jiumeng Liu; Catherine C. Turkel

The authors evaluated the long-term efficacy and safety of botulinum toxin type A (BTX-A) in poststroke spasticity patients who completed a 12-week placebo-controlled study and received multiple open-label treatments with 200 to 240 U BTX-A for 42 weeks. Significant and sustained improvements were observed for Disability Assessment and Ashworth scores. Adverse events were generally mild. This extension of a double-blind study demonstrates that repeated treatments of BTX-A significantly improve function and tone in spasticity.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets

Ben H. Lee; Claudia Mohr; Felipe D. Lopez-Hilfiker; Anna Lutz; Mattias Hallquist; Lance Lee; Paul M. Romer; R. C. Cohen; Siddharth Iyer; Theo Kurtén; Weiwei Hu; Douglas A. Day; Pedro Campuzano-Jost; Jose L. Jimenez; Lu Xu; Nga L. Ng; Hongyu Guo; Rodney J. Weber; Robert J. Wild; Steven S. Brown; Abigail Koss; Joost A. de Gouw; Kevin Olson; Allen H. Goldstein; Roger Seco; Saewung Kim; Kevin McAvey; Paul B. Shepson; T. K. Starn; Karsten Baumann

Significance We present online field observations of the speciated molecular composition of organic nitrates in ambient atmospheric particles utilizing recently developed high-resolution MS-based instrumentation. We find that never-before-identified low-volatility organic species, which are highly functionalized, explain a major fraction of the total particle nitrate mass measured by the traditional aerosol mass spectrometer. An observationally constrained box model shows that these organic nitrates are likely derived from oxidation of biogenic hydrocarbons and persist in the particle phase for only a few hours. Given their high rate of loss, their fates have significant implications for the budgets of secondary organic aerosol particles and nitrogen oxides but are currently unknown. Speciated particle-phase organic nitrates (pONs) were quantified using online chemical ionization MS during June and July of 2013 in rural Alabama as part of the Southern Oxidant and Aerosol Study. A large fraction of pONs is highly functionalized, possessing between six and eight oxygen atoms within each carbon number group, and is not the common first generation alkyl nitrates previously reported. Using calibrations for isoprene hydroxynitrates and the measured molecular compositions, we estimate that pONs account for 3% and 8% of total submicrometer organic aerosol mass, on average, during the day and night, respectively. Each of the isoprene- and monoterpenes-derived groups exhibited a strong diel trend consistent with the emission patterns of likely biogenic hydrocarbon precursors. An observationally constrained diel box model can replicate the observed pON assuming that pONs (i) are produced in the gas phase and rapidly establish gas–particle equilibrium and (ii) have a short particle-phase lifetime (∼2–4 h). Such dynamic behavior has significant implications for the production and phase partitioning of pONs, organic aerosol mass, and reactive nitrogen speciation in a forested environment.


Geophysical Research Letters | 2015

Evolution of brown carbon in wildfire plumes

Haviland Forrister; Jiumeng Liu; Eric Scheuer; Jack E. Dibb; Luke D. Ziemba; K. L. Thornhill; Bruce E. Anderson; Glenn S. Diskin; A. E. Perring; Joshua P. Schwarz; Pedro Campuzano-Jost; Douglas A. Day; Brett B. Palm; Jose L. Jimenez; Athanasios Nenes; Rodney J. Weber

Particulate brown carbon (BrC) in the atmosphere absorbs light at subvisible wavelengths and has poorly constrained but potentially large climate forcing impacts. BrC from biomass burning has virtually unknown lifecycle and atmospheric stability. Here, BrC emitted from intense wildfires was measured in plumes transported over 2 days from two main fires, during the 2013 NASA SEAC4RS mission. Concurrent measurements of organic aerosol (OA) and black carbon (BC) mass concentration, BC coating thickness, absorption Angstrom exponent, and OA oxidation state reveal that the initial BrC emitted from the fires was largely unstable. Using back trajectories to estimate the transport time indicates that BrC aerosol light absorption decayed in the plumes with a half-life of 9 to 15 h, measured over day and night. Although most BrC was lost within a day, possibly through chemical loss and/or evaporation, the remaining persistent fraction likely determines the background BrC levels most relevant for climate forcing.


Geophysical Research Letters | 2014

Brown carbon in the continental troposphere

Jiumeng Liu; Eric Scheuer; Jack E. Dibb; Luke D. Ziemba; K. L. Thornhill; Bruce E. Anderson; Armin Wisthaler; Tomas Mikoviny; J. Jai Devi; Michael H. Bergin; Rodney J. Weber

Little is known about the optical significance of light absorbing particulate organic compounds (i.e., brown carbon, BrC), including the importance relative to black carbon (BC) and influence on direct radiative forcing by aerosols. The vertical profile of BrC affects its radiative forcing, yet the distribution of BrC in the free troposphere is largely unknown. In this study, BrC absorption was directly measured in solvent extracts of particulate filters obtained from aircraft sampling over the continental USA. Excluding biomass burning plumes, BrC was observed throughout the tropospheric column (<13 km), and its prevalence increased relative to BC with increasing altitude, indicating contributions from secondary sources. Closure analysis showed good agreement between light absorption from BC plus BrC relative to measured total aerosol absorption. A radiative transfer model indicated that BrC absorption reduced top of atmosphere aerosol forcing by ~20%, suggesting that it is an important component of direct aerosol radiative forcing.


Environmental Pollution | 2014

The characteristics of Beijing aerosol during two distinct episodes: impacts of biomass burning and fireworks.

Yuan Cheng; Guenter Engling; Kebin He; Fengkui Duan; Zhen-yu Du; Yongliang Ma; Linlin Liang; Zi-feng Lu; Jiumeng Liu; Mei Zheng; Rodney J. Weber

The chemical composition of Beijing aerosol was measured during summer and winter. Two distinct episodes were identified. Water-soluble potassium (K(+)) increased significantly during the firework episode in winter with an episode to non-episode ratio of 4.97, whereas the biomass burning (BB) episode in summer was characterized by high episode to non-episode ratios of levoglucosan (6.38) and K(+) (6.90). The BB and firework episodes had only a minor influence on the water-soluble OC (organic carbon) to OC ratio. Based on separate investigations of episode and non-episode periods, it was found that: (i) sulfate correlated strongly with both relative humidity and nitrate during the typical winter period presumably indicating the importance of the aqueous-phase oxidation of sulfur dioxide by nitrogen dioxide, (ii) oxalate and WSOC during both winter and summer in Beijing were mainly due to secondary formation, and (iii) high humidity can significantly enhance the formation potential of WSOC in winter.


Environmental Science & Technology | 2016

Efficient Isoprene Secondary Organic Aerosol Formation from a Non-IEPOX Pathway

Jiumeng Liu; Emma L. D’Ambro; Ben H. Lee; Felipe D. Lopez-Hilfiker; Rahul A. Zaveri; Jean C. Rivera-Rios; Frank N. Keutsch; Siddharth Iyer; Theo Kurtén; Zhenfa Zhang; Avram Gold; Jason D. Surratt; John E. Shilling; Joel A. Thornton

With a large global emission rate and high reactivity, isoprene has a profound effect upon atmospheric chemistry and composition. The atmospheric pathways by which isoprene converts to secondary organic aerosol (SOA) and how anthropogenic pollutants such as nitrogen oxides and sulfur affect this process are subjects of intense research because particles affect Earths climate and local air quality. In the absence of both nitrogen oxides and reactive aqueous seed particles, we measure SOA mass yields from isoprene photochemical oxidation of up to 15%, which are factors of 2 or more higher than those typically used in coupled chemistry climate models. SOA yield is initially constant with the addition of increasing amounts of nitric oxide (NO) but then sharply decreases for input concentrations above 50 ppbv. Online measurements of aerosol molecular composition show that the fate of second-generation RO2 radicals is key to understanding the efficient SOA formation and the NOx-dependent yields described here and in the literature. These insights allow for improved quantitative estimates of SOA formation in the preindustrial atmosphere and in biogenic-rich regions with limited anthropogenic impacts and suggest that a more-complex representation of NOx-dependent SOA yields may be important in models.


Environmental Pollution | 2013

Estimating the toxicity of ambient fine aerosols using freshwater rotifer Brachionus calyciflorus (Rotifera: Monogononta)

Vishal Verma; Roberto Rico-Martínez; Neel Kotra; Corey Rennolds; Jiumeng Liu; Terry W. Snell; Rodney J. Weber

The toxicity of atmospheric fine particulate matter (PM2.5) in Atlanta is assessed using freshwater rotifers (Brachionus calyciflorus). The PM-laden quartz filters were extracted in both water and methanol. Aerosol extracts were passed through a C-18 column to separate the PM components into hydrophobic and hydrophilic fractions. Toxicity data reported in the units of LC50 (concentration that kills 50% of the test population in 24 h) shows that ambient particles are toxic to the rotifers with LC50 values ranging from 5 to 400 μg of PM. The methanol extract of the aerosols was substantially more toxic (8 ± 6 times) to the rotifers compared to the water extracts. A sizeable fraction (>70%) of toxicity was found to be associated with the hydrophobic fraction of PM. However, none of the bulk aerosol species was strongly correlated with the LC50 values suggesting a complicated mechanism of toxicity probably involving synergistic interactions of various PM components.


Science of The Total Environment | 2017

Brown and black carbon in Beijing aerosol: Implications for the effects of brown coating on light absorption by black carbon

Yuan Cheng; Kebin He; Guenter Engling; Rodney J. Weber; Jiumeng Liu; Zhen-yu Du; Shu-ping Dong

Brown carbon (BrC) is increasingly included in climate models as an emerging category of particulate organic compounds that can absorb solar radiation efficiently at specific wavelengths. Water-soluble organic carbon (WSOC) has been commonly used as a surrogate for BrC; however, it only represents a limited fraction of total organic carbon (OC) mass, which could be as low as about 20% in urban atmosphere. Using methanol as the extraction solvent, up to approximately 90% of the OC in Beijing aerosol was isolated and measured for absorption spectra over the ultraviolet-to-visible wavelength range. Compared to methanol-soluble OC (MSOC), WSOC underestimated BrC absorption by about 50% at 365nm. The mass absorption efficiencies measured for BrC in Beijing aerosol were converted to the imaginary refractive indices of BrC and subsequently used to compute BrC coating-induced enhancement of light absorption (Eabs) by black carbon. Eabs attributed to lensing was reduced in the case of BrC coating relative to that caused by purely-scattering coating. However, this reduction was overwhelmed by the effect of BrC shell absorption, indicating that the overall effect of BrC coating was an increase in Eabs. Methanol extraction significantly reduced charring of OC during thermal-optical analysis, leading to a large increase in the measured elemental carbon (EC) mass and an apparent improvement in the consistency of EC measurements by different thermal-optical methods.


Environmental Science & Technology | 2017

Isomerization of Second-Generation Isoprene Peroxy Radicals: Epoxide Formation and Implications for Secondary Organic Aerosol Yields

Emma L. D’Ambro; Kristian H. Møller; Felipe D. Lopez-Hilfiker; Siegfried Schobesberger; Jiumeng Liu; John E. Shilling; B. H. Lee; Henrik G. Kjaergaard; Joel A. Thornton

We report chamber measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation, in which radical concentrations were systematically varied and the molecular composition of semi- to low-volatility gases and SOA were measured online. Using a detailed chemical kinetics box model, we find that to explain the behavior of low-volatility products and SOA mass yields relative to input H2O2 concentrations, the second-generation dihydroxy hydroperoxy peroxy radical (C5H11O6·) must undergo an intramolecular H-shift with a net forward rate constant of order 0.1 s-1 or higher. This finding is consistent with quantum chemical calculations that suggest a net forward rate constant of 0.3-0.9 s-1. Furthermore, these calculations suggest that the dominant product of this isomerization is a dihydroxy hydroperoxy epoxide (C5H10O5), which is expected to have a saturation vapor pressure ∼2 orders of magnitude higher, as determined by group-contribution calculations, than the dihydroxy dihydroperoxide, ISOP(OOH)2(C5H12O6), a major product of the peroxy radical reacting with HO2. These results provide strong constraints on the likely volatility distribution of isoprene oxidation products under atmospheric conditions and, thus, on the importance of nonreactive gas-particle partitioning of isoprene oxidation products as an SOA source.

Collaboration


Dive into the Jiumeng Liu's collaboration.

Top Co-Authors

Avatar

Rodney J. Weber

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jose L. Jimenez

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Xiaolu Zhang

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John E. Shilling

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge