Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiuyu Liu is active.

Publication


Featured researches published by Jiuyu Liu.


Advanced Drug Delivery Reviews | 2016

New agents for the treatment of drug-resistant Mycobacterium tuberculosis.

Daniel T. Hoagland; Jiuyu Liu; Robin B. Lee; Richard E. Lee

Inadequate dosing and incomplete treatment regimens, coupled with the ability of the tuberculosis bacilli to cause latent infections that are tolerant of currently used drugs, have fueled the rise of multidrug-resistant tuberculosis (MDR-TB). Treatment of MDR-TB infections is a major clinical challenge that has few viable or effective solutions; therefore patients face a poor prognosis and years of treatment. This review focuses on emerging drug classes that have the potential for treating MDR-TB and highlights their particular strengths as leads including their mode of action, in vivo efficacy, and key medicinal chemistry properties. Examples include the newly approved drugs bedaquiline and delaminid, and other agents in clinical and late preclinical development pipeline for the treatment of MDR-TB. Herein, we discuss the challenges to developing drugs to treat tuberculosis and how the field has adapted to these difficulties, with an emphasis on drug discovery approaches that might produce more effective agents and treatment regimens.


Nature Medicine | 2014

Spectinamides: a new class of semisynthetic antituberculosis agents that overcome native drug efflux

Richard E. Lee; Julian Gregston Hurdle; Jiuyu Liu; David F. Bruhn; Tanja Matt; Michael S. Scherman; Pavan K. Vaddady; Zhong Zheng; Jianjun Qi; Rashid Akbergenov; Sourav Das; Dora B. Madhura; Chetan Rathi; Ashit Trivedi; Cristina Villellas; Robin B. Lee; Samanthi L. Waidyarachchi; Dianqing Sun; Michael R. McNeil; José A. Aínsa; Helena I. Boshoff; Mercedes Gonzalez-Juarrero; Bernd Meibohm; Erik C. Böttger; Anne J. Lenaerts

Although the classical antibiotic spectinomycin is a potent bacterial protein synthesis inhibitor, poor antimycobacterial activity limits its clinical application for treating tuberculosis. Using structure-based design, we generated a new semisynthetic series of spectinomycin analogs with selective ribosomal inhibition and excellent narrow-spectrum antitubercular activity. In multiple murine infection models, these spectinamides were well tolerated, significantly reduced lung mycobacterial burden and increased survival. In vitro studies demonstrated a lack of cross resistance with existing tuberculosis therapeutics, activity against multidrug-resistant (MDR) and extensively drug-resistant tuberculosis and an excellent pharmacological profile. Key to their potent antitubercular properties was their structural modification to evade the Rv1258c efflux pump, which is upregulated in MDR strains and is implicated in macrophage-induced drug tolerance. The antitubercular efficacy of spectinamides demonstrates that synthetic modifications to classical antibiotics can overcome the challenge of intrinsic efflux pump-mediated resistance and expands opportunities for target-based tuberculosis drug discovery.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Structures of trehalose-6-phosphate phosphatase from pathogenic fungi reveal the mechanisms of substrate recognition and catalysis

Yi Miao; Jennifer L. Tenor; Dena L. Toffaletti; Erica J. Washington; Jiuyu Liu; William R. Shadrick; Maria A. Schumacher; Richard E. Lee; John R. Perfect; Richard G. Brennan

Significance Fungal infections pose a serious threat to human health and result in several million deaths annually. To survive in their human host, pathogenic fungi require the disaccharide, trehalose. Significantly, the enzymes that synthesize trehalose are absent in humans, and thus serve as potential targets for novel antifungal intervention. Here, we describe multiple structures of one of the trehalose biosynthetic enzymes, trehalose-6-phosphate phosphatase (Tps2). These structures and germane in vivo and biochemical studies reveal the significance of the Tps2 N-terminal domain in fungal cellular stress responses and the conformational flexibility of the Tps2 C-terminal domain that imposes exquisite substrate specificity and permits efficient catalysis. These structures pave the way for “rational” inhibitor design against Tps2, facilitating antifungal drug design. Trehalose is a disaccharide essential for the survival and virulence of pathogenic fungi. The biosynthesis of trehalose requires trehalose-6-phosphate synthase, Tps1, and trehalose-6-phosphate phosphatase, Tps2. Here, we report the structures of the N-terminal domain of Tps2 (Tps2NTD) from Candida albicans, a transition-state complex of the Tps2 C-terminal trehalose-6-phosphate phosphatase domain (Tps2PD) bound to BeF3 and trehalose, and catalytically dead Tps2PD(D24N) from Cryptococcus neoformans bound to trehalose-6-phosphate (T6P). The Tps2NTD closely resembles the structure of Tps1 but lacks any catalytic activity. The Tps2PD–BeF3–trehalose and Tps2PD(D24N)–T6P complex structures reveal a “closed” conformation that is effected by extensive interactions between each trehalose hydroxyl group and residues of the cap and core domains of the protein, thereby providing exquisite substrate specificity. Disruption of any of the direct substrate–protein residue interactions leads to significant or complete loss of phosphatase activity. Notably, the Tps2PD–BeF3–trehalose complex structure captures an aspartyl-BeF3 covalent adduct, which closely mimics the proposed aspartyl-phosphate intermediate of the phosphatase catalytic cycle. Structures of substrate-free Tps2PD reveal an “open” conformation whereby the cap and core domains separate and visualize the striking conformational changes effected by substrate binding and product release and the role of two hinge regions centered at approximately residues 102–103 and 184–188. Significantly, tps2Δ, tps2NTDΔ, and tps2D705N strains are unable to grow at elevated temperatures. Combined, these studies provide a deeper understanding of the substrate recognition and catalytic mechanism of Tps2 and provide a structural basis for the future design of novel antifungal compounds against a target found in three major fungal pathogens.


Scientific Reports | 2015

In vitro and in vivo Evaluation of Synergism between Anti-Tubercular Spectinamides and Non-Classical Tuberculosis Antibiotics

David F. Bruhn; Michael S. Scherman; Jiuyu Liu; Dimitri Scherbakov; Bernd Meibohm; Erik C. Böttger; Anne J. Lenaerts; Richard E. Lee

Spectinamides are new semi-synthetic spectinomycin derivatives with potent anti-tubercular activity. The reported synergism of the precursor spectinomycin with other antibiotics prompted us to examine whether spectinamides sensitize M. tuberculosis to other antibiotics not traditionally used in the treatment of tuberculosis to potentially expand therapeutic options for MDR/XDR Tuberculosis. Whole cell synergy checkerboard screens were performed using the laboratory strain M. tuberculosis H37Rv, lead spectinamide 1599, and a broad panel of 27 antibiotics. In vitro, 1599 synergized with 11 drugs from 6 antibiotic classes. The observed synergy was tested against clinical isolates confirming synergy with Clarithromycin, Doxycycline and Clindamycin, combinations of which were taken forward for in vivo efficacy determination. Co-administration of 1599 and clarithromycin provided additional bacterial killing in a mouse model of acute tuberculosis infection, but not in a chronic infection model. Further studies indicated that mismatched drug exposure profiles likely permitted induction of phenotypic clarithromycin resistance and subsequent loss of synergism. These studies highlight the importance of validating in vitro synergism and the challenge of matching drug exposures to obtain a synergistic outcome in vivo. Results from this study indicate that a 1599 clarithromycin combination is potentially viable, providing the drug exposures can be carefully monitored.


Bioconjugate Chemistry | 2014

Development of BODIPY FL Vindoline as a Novel and High-Affinity Pregnane X Receptor Fluorescent Probe

Wenwei Lin; Jiuyu Liu; Cynthia Jeffries; Lei Yang; Yan Lu; Richard E. Lee; Taosheng Chen

The pregnane X receptor (PXR) regulates the metabolism and excretion of xenobiotics and endobiotics by regulating the expression of drug-metabolizing enzymes and transporters. The unique structure of PXR allows it to bind many drugs and drug leads, possibly causing undesired drug–drug interactions. Therefore, it is crucial to evaluate whether chemicals or drugs bind to PXR. Fluorescence-based assays are preferred because of their sensitivity and nonradioactive nature. On the basis of our previously characterized 4 (BODIPY FL vinblastine), a high-affinity PXR probe, we developed 20 (BODIPY FL vindoline) and showed that it is a novel and potent PXR fluorescent probe with Kd of 256 nM in a time-resolved fluorescence resonance energy transfer (TR-FRET) binding assay with PXR. By using 20 (BODIPY FL vindoline) in the PXR TR-FRET assay, we obtained a more than 7-fold signal-to-background ratio and high signal stability (signal was stable for at least 120 min, and Z′-factor > 0.85 from 30 to 240 min). The assay can tolerate DMSO up to 2%. This assay has been used to evaluate a panel of PXR ligands for their PXR-binding affinities. The performance of 20 (BODIPY FL vindoline) in the PXR TR-FRET assay makes it an ideal PXR fluorescent probe, and the newly developed PXR TR-FRET assay with 20 (BODIPY FL vindoline) as a fluorescent probe is suitable for high-throughput screening to identify PXR-binding ligands.


Bioorganic & Medicinal Chemistry Letters | 2016

Synthesis and evaluation of pretomanid (PA-824) oxazolidinone hybrids

Rakesh; David F. Bruhn; Michael S. Scherman; Aman P. Singh; Lei Yang; Jiuyu Liu; Anne J. Lenaerts; Richard E. Lee

Pretomanid (PA-824) is an important nitroimidazole antitubercular agent in late stage clinical trials. However, pretomanid is limited by poor solubility and high protein binding, which presents opportunities for improvement in its physiochemical properties. Conversely, the oxazolidinone linezolid has excellent physicochemical properties and has recently shown impressive activity for the treatment of drug resistant tuberculosis. In this study we explore if incorporation of the outer ring elements found in first and second generation oxazolidinones into the nitroimidazole core of pretomanid can be used to improve its physicochemical and antitubercular properties. The synthesis of pretomanid outer oxazolidinone ring hybrids was successfully performed producing hybrids that maintained antitubercular activity and had improved in vitro physicochemical properties. Three lead compounds were identified and evaluated in a chronic model of tuberculosis infection in mice. However, the compounds lacked efficacy suggesting that portions of PA-824 tail not found in the hybrid molecules are required for in vivo efficacy.


Science Translational Medicine | 2015

Aminomethyl spectinomycins as therapeutics for drug-resistant respiratory tract and sexually transmitted bacterial infections.

David F. Bruhn; Samanthi L. Waidyarachchi; Dora B. Madhura; Dimitri Shcherbakov; Zhong Zheng; Jiuyu Liu; Yasser M. Abdelrahman; Aman P. Singh; Stefan Duscha; Chetan Rathi; Robin B. Lee; Robert J. Belland; Bernd Meibohm; Jason W. Rosch; Erik C. Böttger; Richard E. Lee

A new series of spectinomycin analogs with potency against drug-resistant bacterial pathogens was designed and developed with a structure-based approach and validated in vitro and in vivo. Teaching an old antibiotic new tricks More and more cases of gonorrhea no longer respond to standard antibiotic treatment, leading the CDC (U.S. Centers for Disease Control and Prevention) to classify Neisseria gonorrhoeae as an urgent threat. New antibiotics are urgently needed to treat this and other emerging drug-resistant pathogens. To this end, Bruhn and Waidyarachchi et al. have taken a second look at an old group of antibiotics, the spectinomycins, a class of drugs that inhibit bacterial protein synthesis but do not kill many types of pathogens. By carefully mapping how the drug binds to the ribosome structure, the authors determined that N-benzyl–substituted spectinomycins should be able to inhibit the ribosomes of a broad spectrum of bacteria that produce disease. And indeed, this new series potently inhibited bacteria that cause respiratory illness (Streptococcus pneumoniae, Haemophilus influenzae, Legionella pneumophila, and Moraxella catarrhalis) and sexually transmitted disease (N. gonorrhoeae and Chlamydia trachomatis). Their pharmacokinetics properties were promising, and assays showed that they are unlikely to cause adverse reactions. These new spectinomycins are active against drug-resistant forms of S. pneumoniae and cure mice of fatal pneumococcal pneumonia and sepsis, an encouraging result for the eventual use of these drugs for human infection. The antibiotic spectinomycin is a potent inhibitor of bacterial protein synthesis with a unique mechanism of action and an excellent safety index, but it lacks antibacterial activity against most clinically important pathogens. A series of N-benzyl–substituted 3′-(R)-3′-aminomethyl-3′-hydroxy spectinomycins was developed on the basis of a computational analysis of the aminomethyl spectinomycin binding site and structure-guided synthesis. These compounds had ribosomal inhibition values comparable to spectinomycin but showed increased potency against the common respiratory tract pathogens Streptococcus pneumoniae, Haemophilus influenzae, Legionella pneumophila, and Moraxella catarrhalis, as well as the sexually transmitted bacteria Neisseria gonorrhoeae and Chlamydia trachomatis. Non–ribosome-binding 3′-(S) isomers of the lead compounds demonstrated weak inhibitory activity in in vitro protein translation assays and poor antibacterial activity, indicating that the antibacterial activity of the series remains on target against the ribosome. Compounds also demonstrated no mammalian cytotoxicity, improved microsomal stability, and favorable pharmacokinetic properties in rats. The lead compound from the series exhibited excellent chemical stability superior to spectinomycin; no interaction with a panel of human receptors and drug metabolism enzymes, suggesting low potential for adverse reactions or drug-drug interactions in vivo; activity in vitro against a panel of penicillin-, macrolide-, and cephalosporin-resistant S. pneumoniae clinical isolates; and the ability to cure mice of fatal pneumococcal pneumonia and sepsis at a dose of 5 mg/kg. Together, these studies indicate that N-benzyl aminomethyl spectinomycins are suitable for further development to treat drug-resistant respiratory tract and sexually transmitted bacterial infections.


MedChemComm | 2016

Phase II metabolic pathways of spectinamide antitubercular agents: a comparative study of the reactivity of 4-substituted pyridines to glutathione conjugation

Dora B. Madhura; Jiuyu Liu; Bernd Meibohm; Richard E. Lee

Spectinamides are promising new semisynthetic anti-tubercular agents that are modified with a pyridyl side chain, which blocks native efflux from the tuberculosis cell. This study, describes the stability of an advanced panel of spectinamide analogs, with varying substitutions to the pyridyl side chain, to Phase-II conjugative metabolism by glucuronosyl transferase, sulfotransferase and glutathione-S-transferase enzymes using both human and rat S9 enzyme fractions. All solely 5-substituted pyridyl spectinamides exhibited complete stability towards Phase II conjugative enzymes. However, 4-chloro substituted pyridyl spectinamides were susceptible to glutathione conjugation with rates dependent on other substitutions to the pyridine ring. Electron donating 5-substitutions increased the propensity for glutathione conjugation and conversely the introduction of an electron withdrawing 5-fluoro group blocked all observed glutathione conjugation. Based on these Phase II metabolism studies, lead spectinamides 1329, 1445, 1599, 1661 and 1810 were found to have favorable properties for potential lead compounds with no Phase II liabilities.


Journal of Antimicrobial Chemotherapy | 2016

Spectinamides are effective partner agents for the treatment of tuberculosis in multiple mouse infection models.

Gregory T. Robertson; Michael S. Scherman; David F. Bruhn; Jiuyu Liu; Courtney Hastings; Michael R. McNeil; Michelle M. Butler; Terry L. Bowlin; Robin B. Lee; Richard E. Lee; Anne J. Lenaerts

Objectives: New drug regimens employing combinations of existing and experimental antimicrobial agents are needed to shorten treatment of tuberculosis (TB) in humans. The spectinamides are narrow-spectrum semisynthetic analogues of spectinomycin, modified to avoid intrinsic efflux by Mycobacterium tuberculosis. Spectinamides, including lead 1599, have been previously shown to exhibit a promising therapeutic profile in mice as single agents. Here we explore the in vivo activity of lead spectinamides when combined with other agents. Methods: The efficacy of 1599 or 1810 was tested in combination in three increasingly advanced TB mouse models. Mice were infected by aerosol and allowed to establish acute or chronic infection, followed by treatment (⩽4 weeks) with the spectinamides alone or in two- and three-drug combination regimens with existing and novel therapeutic agents. Bacteria were enumerated from lungs by plating for cfu. Results: Herein we show the following: (i) 1599 exhibits additive or synergistic activity with most of the first-line agents; (ii) 1599 in combination with rifampicin and pyrazinamide or with bedaquiline and pyrazinamide promotes significantly improved efficacy in the high-dose aerosol model; (iii) 1599 enhances efficacy of rifampicin or pyrazinamide in chronically infected BALB/c mice; and (iv) 1599 is synergistic when administered in combination with rifampicin and pyrazinamide in the C3HeB/FeJ mouse model showing caseous necrotic pulmonary lesions. Conclusions: Spectinamides were effective partner agents for multiple anti-TB agents including bedaquiline, rifampicin and pyrazinamide. None of these in vivo synergistic interactions was predicted from in vitro MIC chequerboard assays. These data support further development of the spectinamides as combination partners with existing and experimental anti-TB agents.


Aaps Journal | 2016

Tissue Penetration of a Novel Spectinamide Antibiotic for the Treatment of Tuberculosis.

Dora B. Madhura; Ashit Trivedi; Jiuyu Liu; Vincent A. Boyd; Cynthia Jeffries; Vivian S. Loveless; Richard E. Lee; Bernd Meibohm

The in vivo biodistribution and pharmacokinetics of 1329, a novel spectinamide antibiotic with anti-tubercular activity, were studied during intravenous administration of an tritium-labeled compound for nine consecutive, 12-hourly doses to rats. Serial blood samples were collected after the first and the eighth dose, and major organs and tissues were collected 1 h after the ninth dose. Urinary and fecal excretion was monitored throughout the dosing period. Radioactivity in the collected samples was assessed by scintillation counting. During the course of treatment, 86.6% of the administered radioactivity was recovered in urine, feces, organs, and muscle tissue. Urinary excretion was the major route of elimination, with 70% of radioactivity recovered from urine and 12.6% from feces. The time profiles of radioactivity in serum after the first and the eighth dose were identical for the first 2 h post-dose, with similar Cmax (3.39 vs. 3.55 mCi/L) and AUC0−τ (5.08 vs. 5.17 mCi • h/L), indicating no substantial accumulation of 1329 during multiple dosing. Radioactivity in major target organs for pulmonary tuberculosis infection, the lungs and spleen, was 2.79- and 3.06-fold higher than in the blood. Similarly, the intracellular uptake of 1329 into macrophages was sixfold higher than for streptomycin. Overall, these observations suggest biodistribution properties favorable for targeting pulmonary tuberculosis infections.

Collaboration


Dive into the Jiuyu Liu's collaboration.

Top Co-Authors

Avatar

Richard E. Lee

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

David F. Bruhn

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Bernd Meibohm

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robin B. Lee

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Dora B. Madhura

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Samanthi L. Waidyarachchi

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Zhong Zheng

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge