Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiwang Chen is active.

Publication


Featured researches published by Jiwang Chen.


Journal of Clinical Investigation | 2008

AMP-activated protein kinase regulates CO2-induced alveolar epithelial dysfunction in rats and human cells by promoting Na,K-ATPase endocytosis

István Vadász; Laura A. Dada; Arturo Briva; Humberto E. Trejo; Lynn C. Welch; Jiwang Chen; Peter T. Toth; Emilia Lecuona; Lee A. Witters; Paul T. Schumacker; Navdeep S. Chandel; Werner Seeger; Jacob I. Sznajder

Hypercapnia (elevated CO(2) levels) occurs as a consequence of poor alveolar ventilation and impairs alveolar fluid reabsorption (AFR) by promoting Na,K-ATPase endocytosis. We studied the mechanisms regulating CO(2)-induced Na,K-ATPase endocytosis in alveolar epithelial cells (AECs) and alveolar epithelial dysfunction in rats. Elevated CO(2) levels caused a rapid activation of AMP-activated protein kinase (AMPK) in AECs, a key regulator of metabolic homeostasis. Activation of AMPK was mediated by a CO(2)-triggered increase in intracellular Ca(2+) concentration and Ca(2+)/calmodulin-dependent kinase kinase-beta (CaMKK-beta). Chelating intracellular Ca(2+) or abrogating CaMKK-beta function by gene silencing or chemical inhibition prevented the CO(2)-induced AMPK activation in AECs. Activation of AMPK or overexpression of constitutively active AMPK was sufficient to activate PKC-zeta and promote Na,K-ATPase endocytosis. Inhibition or downregulation of AMPK via adenoviral delivery of dominant-negative AMPK-alpha(1) prevented CO(2)-induced Na,K-ATPase endocytosis. The hypercapnia effects were independent of intracellular ROS. Exposure of rats to hypercapnia for up to 7 days caused a sustained decrease in AFR. Pretreatment with a beta-adrenergic agonist, isoproterenol, or a cAMP analog ameliorated the hypercapnia-induced impairment of AFR. Accordingly, we provide evidence that elevated CO(2) levels are sensed by AECs and that AMPK mediates CO(2)-induced Na,K-ATPase endocytosis and alveolar epithelial dysfunction, which can be prevented with beta-adrenergic agonists and cAMP.


PLOS ONE | 2007

High CO2 levels impair alveolar epithelial function independently of pH.

Arturo Briva; István Vadász; Emilia Lecuona; Lynn C. Welch; Jiwang Chen; Laura A. Dada; Humberto E. Trejo; Vidas Dumasius; Zaher S. Azzam; Pavlos Myrianthefs; Daniel Batlle; Yosef Gruenbaum; Jacob I. Sznajder

Background In patients with acute respiratory failure, gas exchange is impaired due to the accumulation of fluid in the lung airspaces. This life-threatening syndrome is treated with mechanical ventilation, which is adjusted to maintain gas exchange, but can be associated with the accumulation of carbon dioxide in the lung. Carbon dioxide (CO2) is a by-product of cellular energy utilization and its elimination is affected via alveolar epithelial cells. Signaling pathways sensitive to changes in CO2 levels were described in plants and neuronal mammalian cells. However, it has not been fully elucidated whether non-neuronal cells sense and respond to CO2. The Na,K-ATPase consumes ∼40% of the cellular metabolism to maintain cell homeostasis. Our study examines the effects of increased pCO2 on the epithelial Na,K-ATPase a major contributor to alveolar fluid reabsorption which is a marker of alveolar epithelial function. Principal Findings We found that short-term increases in pCO2 impaired alveolar fluid reabsorption in rats. Also, we provide evidence that non-excitable, alveolar epithelial cells sense and respond to high levels of CO2, independently of extracellular and intracellular pH, by inhibiting Na,K-ATPase function, via activation of PKCζ which phosphorylates the Na,K-ATPase, causing it to endocytose from the plasma membrane into intracellular pools. Conclusions Our data suggest that alveolar epithelial cells, through which CO2 is eliminated in mammals, are highly sensitive to hypercapnia. Elevated CO2 levels impair alveolar epithelial function, independently of pH, which is relevant in patients with lung diseases and altered alveolar gas exchange.


American Journal of Respiratory and Critical Care Medicine | 2014

The sphingosine kinase 1/sphingosine-1-phosphate pathway in pulmonary arterial hypertension

Jiwang Chen; Haiyang Tang; Justin R. Sysol; Liliana Moreno-Vinasco; Krystyna M. Shioura; Tianji Chen; Irina Gorshkova; Lichun Wang; Long Shuang Huang; Peter V. Usatyuk; Saad Sammani; Guofei Zhou; J. Usha Raj; Joe G. N. Garcia; Evgeny Berdyshev; Jason X.-J. Yuan; Viswanathan Natarajan; Roberto F. Machado

RATIONALE Sphingosine kinases (SphKs) 1 and 2 regulate the synthesis of the bioactive sphingolipid sphingosine-1-phosphate (S1P), an important lipid mediator that promotes cell proliferation, migration, and angiogenesis. OBJECTIVES We aimed to examine whether SphKs and their product, S1P, play a role in the development of pulmonary arterial hypertension (PAH). METHODS SphK1(-/-), SphK2(-/-), and S1P lyase heterozygous (Sgpl1(+/-)) mice, a pharmacologic SphK inhibitor (SKI2), and a S1P receptor 2 (S1PR2) antagonist (JTE013) were used in rodent models of hypoxia-mediated pulmonary hypertension (HPH). S1P levels in lung tissues from patients with PAH and pulmonary arteries (PAs) from rodent models of HPH were measured. MEASUREMENTS AND MAIN RESULTS mRNA and protein levels of SphK1, but not SphK2, were significantly increased in the lungs and isolated PA smooth muscle cells (PASMCs) from patients with PAH, and in lungs of experimental rodent models of HPH. S1P levels were increased in lungs of patients with PAH and PAs from rodent models of HPH. Unlike SphK2(-/-) mice, SphK1(-/-) mice were protected against HPH, whereas Sgpl1(+/-) mice were more susceptible to HPH. Pharmacologic SphK1 and S1PR2 inhibition prevented the development of HPH in rodent models of HPH. Overexpression of SphK1 and stimulation with S1P potentially via ligation of S1PR2 promoted PASMC proliferation in vitro, whereas SphK1 deficiency inhibited PASMC proliferation. CONCLUSIONS The SphK1/S1P axis is a novel pathway in PAH that promotes PASMC proliferation, a major contributor to pulmonary vascular remodeling. Our results suggest that this pathway is a potential therapeutic target in PAH.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2015

Deficiency of Akt1, but not Akt2, attenuates the development of pulmonary hypertension

Haiyang Tang; Jiwang Chen; Dustin R. Fraidenburg; Shanshan Song; Justin R. Sysol; Abigail R. Drennan; Stefan Offermanns; Richard D. Ye; Marcelo G. Bonini; Richard D. Minshall; Joe G. N. Garcia; Roberto F. Machado; Ayako Makino; Jason X.-J. Yuan

Pulmonary vascular remodeling, mainly attributable to enhanced pulmonary arterial smooth muscle cell proliferation and migration, is a major cause for elevated pulmonary vascular resistance and pulmonary arterial pressure in patients with pulmonary hypertension. The signaling cascade through Akt, comprised of three isoforms (Akt1-3) with distinct but overlapping functions, is involved in regulating cell proliferation and migration. This study aims to investigate whether the Akt/mammalian target of rapamycin (mTOR) pathway, and particularly which Akt isoform, contributes to the development and progression of pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension (HPH). Compared with the wild-type littermates, Akt1(-/-) mice were protected against the development and progression of chronic HPH, whereas Akt2(-/-) mice did not demonstrate any significant protection against the development of HPH. Furthermore, pulmonary vascular remodeling was significantly attenuated in the Akt1(-/-) mice, with no significant effect noted in the Akt2(-/-) mice after chronic exposure to normobaric hypoxia (10% O2). Overexpression of the upstream repressor of Akt signaling, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), and conditional and inducible knockout of mTOR in smooth muscle cells were also shown to attenuate the rise in right ventricular systolic pressure and the development of right ventricular hypertrophy. In conclusion, Akt isoforms appear to have a unique function within the pulmonary vasculature, with the Akt1 isoform having a dominant role in pulmonary vascular remodeling associated with HPH. The PTEN/Akt1/mTOR signaling pathway will continue to be a critical area of study in the pathogenesis of pulmonary hypertension, and specific Akt isoforms may help specify therapeutic targets for the treatment of pulmonary hypertension.


American Journal of Respiratory and Critical Care Medicine | 2009

Endothelin-1 Impairs Alveolar Epithelial Function via Endothelial ETB Receptor

Alejandro P. Comellas; Arturo Briva; Laura A. Dada; Maria L. Butti; Humberto E. Trejo; Cecilia Yshii; Zaher S. Azzam; Juan Litvan; Jiwang Chen; Emilia Lecuona; Liuska Pesce; Masashi Yanagisawa; Jacob I. Sznajder

RATIONALE Endothelin-1 (ET-1) is increased in patients with high-altitude pulmonary edema and acute respiratory distress syndrome, and these patients have decreased alveolar fluid reabsorption (AFR). OBJECTIVES To determine whether ET-1 impairs AFR via activation of endothelial cells and nitric oxide (NO) generation. METHODS Isolated perfused rat lung, transgenic rats deficient in ETB receptors, coincubation of lung human microvascular endothelial cells (HMVEC-L) with rat alveolar epithelial type II cells or A549 cells, ouabain-sensitive 86Rb+ uptake. MEASUREMENTS AND MAIN RESULTS The ET-1-induced decrease in AFR was prevented by blocking the endothelin receptor ETB, but not ETA. Endothelial-epithelial cell interaction is required, as direct exposure of alveolar epithelial cells (AECs) to ET-1 did not affect Na,K-ATPase function or protein abundance at the plasma membrane, whereas coincubation of HMVEC-L and AECs with ET-1 decreased Na,K-ATPase activity and protein abundance at the plasma membrane. Exposing transgenic rats deficient in ETB receptors in the pulmonary vasculature (ET-B(-/-)) to ET-1 did not decrease AFR or Na,K-ATPase protein abundance at the plasma membrane of AECs. Exposing HMVEC-L to ET-1 led to increased NO, and the ET-1-induced down-regulation of Na,K-ATPase was prevented by the NO synthase inhibitor l-NAME, but not by a guanylate cyclase inhibitor. CONCLUSIONS We provide the first evidence that ET-1, via an endothelial-epithelial interaction, leads to decreased AFR by a mechanism involving activation of endothelial ETB receptors and NO generation leading to alveolar epithelial Na,K-ATPase down-regulation in a cGMP-independent manner.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2016

Pathogenic role of calcium-sensing receptors in the development and progression of pulmonary hypertension

Haiyang Tang; Aya Yamamura; Hisao Yamamura; Shanshan Song; Dustin R. Fraidenburg; Jiwang Chen; Yali Gu; Nicole M. Pohl; Tong Zhou; Laura Jiménez-Pérez; Ramon J. Ayon; Ankit A. Desai; David Goltzman; Franz Rischard; Zain Khalpey; Stephen M. Black; Joe G. N. Garcia; Ayako Makino; Jason X.-J. Yuan

An increase in cytosolic free Ca(2+) concentration ([Ca(2+)]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and a critical stimulation for PASMC proliferation and migration. Previously, we demonstrated that expression and function of calcium sensing receptors (CaSR) in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH) and animals with experimental pulmonary hypertension (PH) were greater than in PASMC from normal subjects and control animals. However, the mechanisms by which CaSR triggers Ca(2+) influx in PASMC and the implication of CaSR in the development of PH remain elusive. Here, we report that CaSR functionally interacts with TRPC6 to regulate [Ca(2+)]cyt in PASMC. Downregulation of CaSR or TRPC6 with siRNA inhibited Ca(2+)-induced [Ca(2+)]cyt increase in IPAH-PASMC (in which CaSR is upregulated), whereas overexpression of CaSR or TRPC6 enhanced Ca(2+)-induced [Ca(2+)]cyt increase in normal PASMC (in which CaSR expression level is low). The upregulated CaSR in IPAH-PASMC was also associated with enhanced Akt phosphorylation, whereas blockade of CaSR in IPAH-PASMC attenuated cell proliferation. In in vivo experiments, deletion of the CaSR gene in mice (casr(-/-)) significantly inhibited the development and progression of experimental PH and markedly attenuated acute hypoxia-induced pulmonary vasoconstriction. These data indicate that functional interaction of upregulated CaSR and upregulated TRPC6 in PASMC from IPAH patients and animals with experimental PH may play an important role in the development and progression of sustained pulmonary vasoconstriction and pulmonary vascular remodeling. Blockade or downregulation of CaSR and/or TRPC6 with siRNA or miRNA may be a novel therapeutic strategy to develop new drugs for patients with pulmonary arterial hypertension.


Thorax | 2015

Sphingosine-1-phosphate lyase is an endogenous suppressor of pulmonary fibrosis: role of S1P signalling and autophagy

Long Shuang Huang; Evgeny Berdyshev; John T. Tran; Lishi Xie; Jiwang Chen; David L. Ebenezer; Biji Mathew; Irina Gorshkova; Wei Zhang; Sekhar P. Reddy; Anantha Harijith; Gang Wang; Carol A. Feghali-Bostwick; Imre Noth; Shwu Fan Ma; Tong Zhou; Wenli Ma; Joe G. N. Garcia; Viswanathan Natarajan

Introduction Idiopathic pulmonary fibrosis (IPF) is characterised by accumulation of fibroblasts and myofibroblasts and deposition of extracellular matrix proteins. Sphingosine-1-phosphate (S1P) signalling plays a critical role in pulmonary fibrosis. Methods S1P lyase (S1PL) expression in peripheral blood mononuclear cells (PBMCs) was correlated with pulmonary functions and overall survival; used a murine model to check the role of S1PL on the fibrogenesis and a cell culture system to study the effect of S1PL expression on transforming growth factor (TGF)-β- and S1P-induced fibroblast differentiation. Results S1PL expression was upregulated in fibrotic lung tissues and primary lung fibroblasts isolated from patients with IPF and bleomycin-challenged mice. TGF-β increased the expression of S1PL in human lung fibroblasts via activation and binding of Smad3 transcription factor to Sgpl1 promoter. Overexpression of S1PL attenuated TGF-β-induced and S1P-induced differentiation of human lung fibroblasts through regulation of the expression of LC3 and beclin 1. Knockdown of S1PL (Sgpl1+/−) in mice augmented bleomycin-induced pulmonary fibrosis, and patients with IPF reduced Sgpl1 mRNA expression in PBMCs exhibited higher severity of fibrosis and lower survival rate. Conclusion These studies suggest that S1PL is a novel endogenous suppressor of pulmonary fibrosis in human IPF and animal models.


Journal of Cell Science | 2009

Myosin-Va restrains the trafficking of Na+/K+-ATPase-containing vesicles in alveolar epithelial cells

Emilia Lecuona; Alexander A. Minin; Humberto E. Trejo; Jiwang Chen; Alejandro P. Comellas; Haiying Sun; Doris Grillo; Oxana Nekrasova; Lynn C. Welch; Igal Szleifer; Vladimir I. Gelfand; Jacob I. Sznajder

Stimulation of Na+/K+-ATPase activity in alveolar epithelial cells by cAMP involves its recruitment from intracellular compartments to the plasma membrane. Here, we studied the role of the actin molecular motor myosin-V in this process. We provide evidence that, in alveolar epithelial cells, cAMP promotes Na+/K+-ATPase recruitment to the plasma membrane by increasing the average speed of Na+/K+-ATPase-containing vesicles moving to the cell periphery. We found that three isoforms of myosin-V are expressed in alveolar epithelial cells; however, only myosin-Va and Vc colocalized with the Na+/K+-ATPase in intracellular membrane fractions. Overexpression of dominant-negative myosin-Va or knockdown with specific shRNA increased the average speed and distance traveled by the Na+/K+-ATPase-containing vesicles, as well as the Na+/K+-ATPase activity and protein abundance at the plasma membrane to similar levels as those observed with cAMP stimulation. These data show that myosin-Va has a role in restraining Na+/K+-ATPase-containing vesicles within intracellular pools and that this restrain is released after stimulation by cAMP allowing the recruitment of the Na+/K+-ATPase to the plasma membrane and thus increased activity.


American Journal of Respiratory Cell and Molecular Biology | 2013

Protein Kinase A-Iα Regulates Na,K-ATPase Endocytosis in Alveolar Epithelial Cells Exposed to High CO2 Concentrations

Emilia Lecuona; Haiying Sun; Jiwang Chen; Humberto E. Trejo; Margaret A. Baker; Jacob I. Sznajder

Elevated concentrations of CO2 (hypercapnia) lead to alveolar epithelial dysfunction by promoting Na,K-ATPase endocytosis. In the present report, we investigated whether the CO2/HCO3(-) activated soluble adenylyl cyclase (sAC) regulates this process. We found that hypercapnia increased the production of cyclic adenosine monophosphate (cAMP) and stimulated protein kinase A (PKA) activity via sAC, which was necessary for Na,K-ATPase endocytosis. During hypercapnia, cAMP was mainly produced in specific microdomains in the proximity of the plasma membrane, leading to PKA Type Iα activation. In alveolar epithelial cells exposed to high CO2 concentrations, PKA Type Iα regulated the time-dependent phosphorylation of the actin cytoskeleton component α-adducin at serine 726. Cells expressing small hairpin RNA for PKAc, dominant-negative PKA Type Iα, small interfering RNA for α-adducin, and α-adducin with serine 726 mutated to alanine prevented Na,K-ATPase endocytosis. In conclusion, we provide evidence for a new mechanism by which hypercapnia via sAC, cAMP, PKA Type Iα, and α-adducin regulates Na,K-ATPase endocytosis in alveolar epithelial cells.


PLOS ONE | 2014

Upregulated copper transporters in hypoxia-induced pulmonary hypertension.

Adriana M. Zimnicka; Haiyang Tang; Qiang Guo; Frank Kuhr; Myung Jin Oh; Jun Wan; Jiwang Chen; Kimberly A. Smith; Dustin R. Fraidenburg; Moumita Saha Roy Choudhury; Irena Levitan; Roberto F. Machado; Jack H. Kaplan; Jason X.-J. Yuan

Pulmonary vascular remodeling and increased arterial wall stiffness are two major causes for the elevated pulmonary vascular resistance and pulmonary arterial pressure in patients and animals with pulmonary hypertension. Cellular copper (Cu) plays an important role in angiogenesis and extracellular matrix remodeling; increased Cu in vascular smooth muscle cells has been demonstrated to be associated with atherosclerosis and hypertension in animal experiments. In this study, we show that the Cu-uptake transporter 1, CTR1, and the Cu-efflux pump, ATP7A, were both upregulated in the lung tissues and pulmonary arteries of mice with hypoxia-induced pulmonary hypertension. Hypoxia also significantly increased expression and activity of lysyl oxidase (LOX), a Cu-dependent enzyme that causes crosslinks of collagen and elastin in the extracellular matrix. In vitro experiments show that exposure to hypoxia or treatment with cobalt (CoCl2) also increased protein expression of CTR1, ATP7A, and LOX in pulmonary arterial smooth muscle cells (PASMC). In PASMC exposed to hypoxia or treated with CoCl2, we also confirmed that the Cu transport is increased using 64Cu uptake assays. Furthermore, hypoxia increased both cell migration and proliferation in a Cu-dependent manner. Downregulation of hypoxia-inducible factor 1α (HIF-1α) with siRNA significantly attenuated hypoxia-mediated upregulation of CTR1 mRNA. In summary, the data from this study indicate that increased Cu transportation due to upregulated CTR1 and ATP7A in pulmonary arteries and PASMC contributes to the development of hypoxia-induced pulmonary hypertension. The increased Cu uptake and elevated ATP7A also facilitate the increase in LOX activity and thus the increase in crosslink of extracellular matrix, and eventually leading to the increase in pulmonary arterial stiffness.

Collaboration


Dive into the Jiwang Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto F. Machado

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Justin R. Sysol

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arturo Briva

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge