Jiwen Zheng
Science Applications International Corporation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiwen Zheng.
Nanomedicine: Nanotechnology, Biology and Medicine | 2009
Marina A. Dobrovolskaia; Anil K. Patri; Jiwen Zheng; Jeffrey D. Clogston; Nader Ayub; Parag Aggarwal; Barry W. Neun; Jennifer B. Hall; Scott E. McNeil
Nanoparticle size and plasma binding profile contribute to a particles longevity in the bloodstream, which can have important consequences for therapeutic efficacy. In this study an approximate doubling in nanoparticle hydrodynamic size was observed upon in vitro incubation of 30- and 50-nm colloidal gold in human plasma. Plasma proteins that bind the surface of citrate-stabilized gold colloids have been identified. Effects of protein binding on the nanoparticle hydrodynamic size, elements of coagulation, and the complement system have been investigated. The difference in size measurements obtained from dynamic light scattering, electron microscopy, and scanning probe microscopy are also discussed.
Toxicological Sciences | 2010
Anna M. Wokovich; Neera V. Gopee; Jiwen Zheng; Diana C. Haines; David Parmiter; Paul H. Siitonen; Christy R. Cozart; Anil K. Patri; Scott E. McNeil; Paul C. Howard; William H. Doub; Lucinda F. Buhse
Titanium dioxide (TiO(2)) is included in some sunscreen formulations to physically block ultraviolet radiation. A dermal penetration study was conducted in minipigs with three TiO(2) particles (uncoated submicron sized, uncoated nano-sized, and dimethicone/methicone copolymer-coated nanosized) applied 5% by weight in a sunscreen. These and control formulations were topically applied to minipigs at 2 mg cream/cm(2) skin (4 applications/day, 5 days/week, 4 weeks). Skin (multiple sites), lymph nodes, liver, spleen, and kidneys were removed, and the TiO(2) content was determined (as titanium) using inductively coupled plasma mass spectroscopy. Titanium levels in lymph nodes and liver from treated animals were not increased over the values in control animals. The epidermis from minipigs treated with sunscreens containing TiO(2) showed elevated titanium. Increased titanium was detected in abdominal and neck dermis of minipigs treated with uncoated and coated nanoscale TiO(2). Using electron microscopy-energy dispersive x-ray analysis, all three types of TiO(2) particles were found in the stratum corneum and upper follicular lumens in all treated skin samples (more particles visible with coated nanoscale TiO(2)). Isolated titanium particles were also present at various locations in the dermis of animals treated with all three types of TiO(2)-containing sunscreens; however, there was no pattern of distribution or pathology suggesting the particles could be the result of contamination. At most, the few isolated particles represent a tiny fraction of the total amount of applied TiO(2). These findings indicate that there is no significant penetration of TiO(2) nanoparticles through the intact normal epidermis.
Toxicological Sciences | 2008
Stephan T. Stern; Banu Zolnik; Christopher B. McLeland; Jeffery Clogston; Jiwen Zheng; Scott E. McNeil
Quantum dots (QDs) are being investigated as novel in vivo imaging agents. The leaching of toxic metals from these QDs in biological systems is of great concern. This study compared the cytotoxic mechanisms of two QD species made of different core materials (cadmium selenide [CdSe] vs. indium gallium phosphide [InGaP]) but similar core sizes (5.1 vs. 3.7 nm) and surface compositions (both ZnS capped, lipid-coated and pegylated). The CdSe QD was found to be 10-fold more toxic to porcine renal proximal tubule cells (LLC-PK1) than the InGaP QD on a molar basis, as determined by MTT assay (48 h IC(50) 10nM for CdSe vs. 100nM for InGaP). Neither of the QD species induced appreciable oxidative stress, as determined by lipid peroxide and reduced glutathione content, suggesting that toxicity was not metal associated. In agreement, treatment of cells with CdSe QDs was not associated with changes in metallothionein-IA (MT-IA) gene expression or Cd-associated caspase 3 enzyme activation. By contrast, incubation of the LLC-PK1 cells with the InGaP QD resulted in a dramatic increase in MT-IA expression by 21- and 43-fold, at 8 and 24 h, respectively. The most remarkable finding was evidence of extensive autophagy in QD-treated cells, as determined by Lysotracker Red dye uptake, TEM, and LC3 immunobloting. Autophagy induction has also been described for other nanomaterials and may represent a common cellular response. These data suggest that QD cytotoxicity is dependent upon properties of the particle as a whole, and not exclusively the metal core materials.
Journal of Applied Toxicology | 2009
Anil K. Patri; Thomas H. Umbreit; Jiwen Zheng; Kunio Nagashima; Peter L. Goering; Sabine Francke-Carroll; Edward A. Gordon; James L. Weaver; Terry Miller; Scott E. McNeil; Mel E. Stratmeyer
In an effort to understand the disposition and toxicokinetics of nanoscale materials, we used EDS (energy dispersive X‐ray spectroscopy) to detect and map the distribution of titanium dioxide (TiO2) in tissue sections from mice following either subcutaneous (s.c.) or intravenous (i.v.) injection. TiO2 nanoparticles were administered at a dose of 560 mg/kg (i.v.) or 5600 mg/kg (s.c.) to Balb/c female mice on two consecutive days. Tissues (liver, kidney, lung, heart, spleen, and brain) were examined by light microscopy, TEM (transmission electron microscopy), SEM (scanning electron microscopy), and EDS following necropsy one day after treatment. Particle agglomerates were detected by light microsopy in all tissues examined, EDS microanalysis was used to confirm that these tissues contained elemental titanium and oxygen. The TEM micrographs and EDS spectra of the aggregates were compared with in vitro measurements of TiO2 nanoparticle injection solution (i.e., in water). The nanoparticles were also characterized using dynamic light scattering in water, 10 mM NaCl, and phosphate buffered saline (PBS). In low ionic strength solvents (water and 10 mM NaCl), the TiO2 particles had average hydrodynamic diameters ranging from 114–122 nm. In PBS, however, the average diameter increases to 1–2 μm, likely due to aggregation analogous to that observed in tissue by TEM and EDS. This investigation demonstrates the suitability of energy dispersive X‐ray spectroscopy (EDS) for detection of nanoparticle aggregates in tissues and shows that disposition of TiO2 nanoparticles depends on the route of administration (i.v. or s.c.). Published in 2009 by John Wiley and Sons, Ltd.
Molecular Pharmaceutics | 2010
Su Tang Lo; Stephan T. Stern; Jeffrey D. Clogston; Jiwen Zheng; Pavan P. Adiseshaiah; Marina A. Dobrovolskaia; Jongdoo Lim; Anil K. Patri; Xiankai Sun; Eric E. Simanek
The physicochemical characteristics, in vitro properties, and in vivo toxicity and efficacy of a third generation triazine dendrimer bearing approximately nine 2 kDa polyethylene glycol chains and twelve ester linked paclitaxel groups are reported. The hydrodynamic diameter of the neutral construct varies slightly with aqueous solvent ranging from 15.6 to 19.4 nm. Mass spectrometry and light scattering suggest radically different molecular weights with the former approximately 40 kDa mass consistent with expectation, and the latter 400 kDa mass consistent with a decameric structure and the observed hydrodynamic radii. HPLC can be used to assess purity as well as paclitaxel release, which is insignificant in organic solvents or aqueous solutions at neutral and low pH. Paclitaxel release occurs in vitro in human, rat, and mouse plasma and is nonlinear, ranging from 7 to 20% cumulative release over a 48 h incubation period. The construct is 2-3 orders of magnitude less toxic than Taxol by weight in human hepatocarcinoma (Hep G2), porcine renal proximal tubule (LLC-PK1), and human colon carcinoma (LS174T) cells, but shows similar cytotoxicity to Abraxane in LS174T cells. Both Taxol and the construct appear to induce caspase 3-dependent apoptosis. The construct shows a low level of endotoxin, is not hemolytic and does not induce platelet aggregation in vitro, but does appear to reduce collagen-induced platelet aggregation in vitro. Furthermore, the dendrimer formulation slightly activates the complement system in vitro due most likely to the presence of trace amounts (<1%) of free paclitaxel. An animal study provided insight into the maximum tolerated dose (MTD) wherein 10, 25, 50, and 100 mg of paclitaxel/kg of construct or Abraxane were administered once per week for three consecutive weeks to non tumor bearing athymic nude mice. The construct showed in vivo toxicity comparable to that of Abraxane. Both formulations were found to be nontoxic at the administered doses, and the dendrimer had an acute MTD greater than the highest dose administered. In a prostate tumor model (PC-3-h-luc), efficacy was observed over 70 days with an arrest of tumor growth and lack of luciferase activity observed in the twice treated cohort.
Journal of Nanomedicine & Nanotechnology | 2011
Jiwen Zheng; Jeffrey D. Clogston; Anil K. Patri; Marina A. Dobrovolskaia; Scott E. McNeil
Silver nanoparticles are commonly used in a variety of commercial and medical products. Here we investigate the effects of standard sterilization methods, including heat/steam (autoclave) and gamma-irradiation on the structural integrity and biocompatibility of citrate-stabilized silver nanoparticles with nominal sizes of 20, 40, 60 and 80 nm. Particle size, shape and in vitro biocompatibility were studied pre- and post-sterilization. Sterilization by gamma irradiation at dose levels commonly used in medical device industry (15, 25 and 50 kGy) resulted in dramatic changes in particle size and morphology, as monitored by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Exposing the particles to a chemical producer of hydroxyl radicals (N-hydroxy-2-pyridinethione) allowed us to duplicate the sterilization-based changes in size and morphology, implying a free radical mechanism of action. Compared to untreated controls, we also observed a three- to five-fold increase in tendency of sterilized silver nanoparticles to cause platelet aggregation, a sensitive in vitro indicator of thrombogenicity.
Methods of Molecular Biology | 2011
Jiwen Zheng; Kunio Nagashima; David Parmiter; Jason de la Cruz; Anil K. Patri
Energy Dispersive X-ray (EDX) microanalysis is a technique used for identification of the elemental composition of a specimen. The detection of nanoparticles in tissue is a common problem of biodistribution and toxicity studies. High-resolution transmission electron microscopy (TEM) can be employed to detect nanoparticles based on morphology; however, TEM alone cannot conclusively identify nanoparticles. Indeed, micrographs are often ambiguous due to particle aggregation, contamination, or morphology change after cellular uptake. EDX can be used to confirm the composition and distribution of the nanoparticles through spectrum and elemental mapping. This protocol outlines the procedures for compositional identification of nanoparticles using an EDX spectrometer incorporated into a scanning electron microscopy (SEM) system. This protocol outlines sample preparation, EDX spectrum acquisition, elemental peak analysis and spectral mapping acquisition.
Methods of Molecular Biology | 2011
Kunio Nagashima; Jiwen Zheng; David Parmiter; Anil K. Patri
This chapter outlines the procedures for ex vivo TEM preparation of nanoparticle-containing tissue or cell culture samples using an epoxy resin embedding method. The purpose of this procedure is to preserve the structure of tissue in a hardened epoxy block with minimal disruption of cellular structures, to aid in the meaningful analysis of in vivo or cell culture experiments. The process begins with hydrated tissue and ends with tissue that is virtually water-free and preserved in a static state within a plastic resin matrix. The resin mixture permeates the dehydrated tissue, making the sample firm enough to cut. Procedures are also given for fixing nanoparticle-containing cell culture samples.
Nanomaterials | 2018
Dajun Sun; Rodney Rouse; Vikram Patel; Yong Wu; Jiwen Zheng; Alokita Karmakar; Anil Patri; Priyanka Chitranshi; David A. Keire; Jia Ma; Wenlei Jiang
The objective of this study was to evaluate physicochemical equivalence between brand (i.e., Ferrlecit) and generic sodium ferric gluconate (SFG) in sucrose injection by conducting a series of comparative in vitro characterizations using advanced analytical techniques. The elemental iron and carbon content, thermal properties, viscosity, particle size, zeta potential, sedimentation coefficient, and molecular weight were determined. There was no noticeable difference between brand and generic SFG in sucrose injection for the above physical parameters evaluated, except for the sedimentation coefficient determined by sedimentation velocity analytical ultracentrifugation (SV-AUC) and molecular weight by asymmetric field flow fractionation-multi-angle light scattering (AFFF-MALS). In addition, brand and generic SFG complex products showed comparable molecular weight distributions when determined by gel permeation chromatography (GPC). The observed minor differences between brand and generic SFG, such as sedimentation coefficient, do not impact their biological activities in separate studies of in vitro cellular uptake and rat biodistribution. Coupled with the ongoing clinical study comparing the labile iron level in healthy volunteers, the FDA-funded post-market studies intended to illustrate comprehensive surveillance efforts ensuring safety and efficacy profiles of generic SFG complex in sucrose injection, and also to shed new light on the approval standards on generic parenteral iron colloidal products.
ACS Nano | 2008
Alexei P. Leonov; Jiwen Zheng; Jeffrey D. Clogston; Stephan T. Stern; Anil K. Patri; Alexander Wei