Jiwon Seo
Gwangju Institute of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiwon Seo.
Organic Letters | 2010
Jiwon Seo; Annelise E. Barron; Ronald N. Zuckermann
Peptoids, oligo-N-substituted glycines, can fold into well-defined helical secondary structures. The design and synthesis of new peptoid building blocks that are capable of both (a) inducing a helical secondary structure and (b) decorating the helices with chemical functionalities are reported. Peptoid heptamers containing carboxamide, carboxylic acid or thiol functionalities were synthesized, and the resulting peptoids were shown to form stable helices. A thiol-containing peptoid readily formed the homodisulfide, providing a convenient route to prepare peptoid helix homodimers.
Organic Letters | 2009
Jiwon Seo; Nairie Michaelian; Shawn C. Owens; Scott T. Dashner; Amanda J. Wong; Annelise E. Barron; Michael R. Carrasco
The chemoselective glycosylation of N-alkylaminooxy side chains with unprotected reducing sugars has proven useful for the synthesis of glycopeptides. Herein, we extend the N-alkylaminooxy strategy to the synthesis of glycopeptoids. A N-methylaminooxy submonomer was efficiently synthesized and incorporated into peptoids. Glycosylation of the peptoids proceeded chemoselectively and site-specifically at the N-methylaminooxy moieties. Employing microwave irradiation significantly increased the degree of glycosylation and shortened the reaction times.
Scientific Reports | 2013
Dongwook Lee; Jiwon Seo; Xi Zhu; Jiyoul Lee; Hyeon-Jin Shin; Jacqueline M. Cole; Taeho Shin; Jaichan Lee; Hangil Lee; Haibin Su
Graphene oxide has recently been considered to be a potential replacement for cadmium-based quantum dots due to its expected high fluorescence. Although previously reported, the origin of the luminescence in graphene oxide is still controversial. Here, we report the presence of core/valence excitons in graphene-based materials, a basic ingredient for optical devices, induced by quantum confinement. Electron confinement in the unreacted graphitic regions of graphene oxide was probed by high resolution X-ray absorption near edge structure spectroscopy and first-principles calculations. Using experiments and simulations, we were able to tune the core/valence exciton energy by manipulating the size of graphitic regions through the degree of oxidation. The binding energy of an exciton in highly oxidized graphene oxide is similar to that in organic electroluminescent materials. These results open the possibility of graphene oxide-based optoelectronic device technology.
Bioconjugate Chemistry | 2012
Jiwon Seo; Gang Ren; Hongguang Liu; Zheng Miao; Minyoung Park; Yihong Wang; Tyler M. Miller; Annelise E. Barron; Zhen Cheng
Peptoids are a rapidly developing class of biomimetic polymers based on oligo-N-substituted glycine backbones, designed to mimic peptides and proteins. Inspired by natural antimicrobial peptides, a group of cationic amphipathic peptoids has been successfully discovered with potent, broad-spectrum activity against pathogenic bacteria; however, there are limited studies to address the in vivo pharmacokinetics of the peptoids. Herein, (64)Cu-labeled DOTA conjugates of three different peptoids and two control peptides were synthesized and assayed in vivo by both biodistribution studies and small animal positron emission tomography (PET). The study was designed in a way to assess how structural differences of the peptidomimetics affect in vivo pharmacokinetics. As amphipathic molecules, major uptake of the peptoids occurred in the liver. Increased kidney uptake was observed by deleting one hydrophobic residue in the peptoid, and (64)Cu-3 achieved the highest kidney uptake of all the conjugates tested in this study. In comparison to peptides, our data indicated that peptoids had general in vivo properties of higher tissue accumulation, slower elimination, and higher in vivo stability. Different administration routes (intravenous, intraperitoneal, and oral) were investigated with peptoids. When administered orally, the peptoids showed poor bioavailability, reminiscent of that of peptide. However, remarkably longer passage through the gastrointestinal (GI) tract without rapid digestion was observed for peptoids. These unique in vivo properties of peptoids were rationalized by efficient cellular membrane permeability and protease resistance of peptoids. The results observed in the biodistribution studies could be confirmed by PET imaging, which provides a reliable way to evaluate in vivo pharmacokinetic properties of peptoids noninvasively and in real time. The pharmacokinetic data presented here can provide insight for further development of the antimicrobial peptoids as pharmaceuticals.
PLOS ONE | 2014
Wei Huang; Jiwon Seo; Stephen B. Willingham; Ann M. Czyzewski; Mark L. Gonzalgo; Irving L. Weissman; Annelise E. Barron
Cationic, amphipathic host defense peptides represent a promising group of agents to be developed for anticancer applications. Poly-N-substituted glycines, or peptoids, are a class of biostable, peptidomimetic scaffold that can display a great diversity of side chains in highly tunable sequences via facile solid-phase synthesis. Herein, we present a library of anti-proliferative peptoids that mimics the cationic, amphipathic structural feature of the host defense peptides and explore the relationships between the structure, anticancer activity and selectivity of these peptoids. Several peptoids are found to be potent against a broad range of cancer cell lines at low-micromolar concentrations including cancer cells with multidrug resistance (MDR), causing cytotoxicity in a concentration-dependent manner. They can penetrate into cells, but their cytotoxicity primarily involves plasma membrane perturbations. Furthermore, peptoid 1, the most potent peptoid synthesized, significantly inhibited tumor growth in a human breast cancer xenotransplantation model without any noticeable acute adverse effects in mice. Taken together, our work provided important structural information for designing host defense peptides or their mimics for anticancer applications. Several cationic, amphipathic peptoids are very attractive for further development due to their high solubility, stability against protease degradation, their broad, potent cytotoxicity against cancer cells and their ability to overcome multidrug resistance.
Organic Letters | 2013
Boyeong Kang; Solchan Chung; Young Deok Ahn; Jiyoun Lee; Jiwon Seo
Distance, orientation, and number controlled porphyrin-peptoid conjugates (PPCs) were efficiently synthesized. Cofacial (1, 2, and 4), slipped-cofacial (3), and unstructured (5) arrangements of porphyrins provided distinct optical and electronic properties characterized by UV-vis and circular dichroism spectroscopy. In addition, ECCD spectra confirmed the handedness of peptoid helices.
Molecular BioSystems | 2012
Wei Huang; Jiwon Seo; Jennifer S Lin; Annelise E. Barron
Two cationic, amphipathic peptoids (poly-N-substituted glycines) were developed as new molecular transporters, which have extensive cellullar uptake and utilize different internalization mechanisms from purely cationic polyguanidine comparators.
Scientific Reports | 2015
Dongwook Lee; Jiwon Seo
The three-dimensionally networked and layered structure of graphene hydroxide (GH) was investigated. After lengthy immersion in a NaOH solution, most of the epoxy groups in the graphene oxide were destroyed, and more hydroxyl groups were generated, transforming the graphene oxide into graphene hydroxide. Additionally, benzoic acid groups were formed, and the ether groups link the neighboring layers, creating a near-3D structure in the GH. To utilize these unique structural features, electrodes with large pores for use in supercapacitors were fabricated using thermal reduction in vacuum. The reduced GH maintained its layered structure and developed a lot of large of pores between/inside the layers. The GH electrodes exhibited high gravimetric as well as high volumetric capacitance.
Bioorganic & Medicinal Chemistry | 2009
Richard B. Silverman; Graham R. Lawton; Hantamalala Ralay Ranaivo; Laura K. Chico; Jiwon Seo; D. Martin Watterson
Several prodrug approaches were taken to mask amino groups in two potent and selective neuronal nitric oxide synthase (nNOS) inhibitors containing either a primary or secondary amino group to lower the charge and improve blood-brain barrier (BBB) penetration. The primary amine was masked as an azide and the secondary amine as an amide or carbamate. The azide was not reduced to the amine under a variety of in vitro and ex vivo conditions. Despite the decrease in charge of the amino group as an amide and as carbamates, BBB penetration did not increase. It appears that the uses of azides as prodrugs for primary amines or amides and carbamates as prodrugs for secondary amines are not universally effective for CNS applications.
Bioorganic & Medicinal Chemistry Letters | 2015
Jiyoun Lee; Wei Huang; James M. Broering; Annelise E. Barron; Jiwon Seo
Inspired by naturally occurring host defense peptides, cationic amphipathic peptoids provide a promising scaffold for anti-cancer therapeutics. Herein, we report a library of peptide-peptoid hybrid prodrugs that can be selectively activated by prostate cancer cells. We have identified several compounds demonstrating potent anti-cancer activity with good to moderate selectivity. We believe that these prodrugs can provide a useful design principle for next generation peptide-peptoid hybrid prodrugs.