Jixin Dong
University of Nebraska Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jixin Dong.
Molecular and Cellular Biology | 2015
Lin Zhang; Shuping Yang; Xingcheng Chen; Seth Stauffer; Fang Yu; Subodh M. Lele; Kai Fu; Kaustubh Datta; Nicholas Y. Palermo; Yuanhong Chen; Jixin Dong
ABSTRACT Yes-associated protein (YAP) is an effector of the Hippo tumor suppressor pathway. The functional significance of YAP in prostate cancer has remained elusive. In this study, we first show that enhanced expression of YAP is able to transform immortalized prostate epithelial cells and promote migration and invasion in both immortalized and cancerous prostate cells. We found that YAP mRNA was upregulated in androgen-insensitive prostate cancer cells (LNCaP-C81 and LNCaP-C4-2 cells) compared to the level in androgen-sensitive LNCaP cells. Importantly, ectopic expression of YAP activated androgen receptor signaling and was sufficient to promote LNCaP cells from an androgen-sensitive state to an androgen-insensitive state in vitro, and YAP conferred castration resistance in vivo. Accordingly, YAP knockdown greatly reduced the rates of migration and invasion of LNCaP-C4-2 cells and under androgen deprivation conditions largely blocked cell division in LNCaP-C4-2 cells. Mechanistically, we found that extracellular signal-regulated kinase–ribosomal s6 kinase signaling was downstream of YAP for cell survival, migration, and invasion in androgen-insensitive cells. Finally, immunohistochemistry showed significant upregulation and hyperactivation of YAP in castration-resistant prostate tumors compared to their levels in hormone-responsive prostate tumors. Together, our results identify YAP to be a novel regulator in prostate cancer cell motility, invasion, and castration-resistant growth and as a potential therapeutic target for metastatic castration-resistant prostate cancer (CRPC).
Oncotarget | 2015
Shuping Yang; Lin Zhang; Vinee Purohit; Surendra K. Shukla; Xingcheng Chen; Fang Yu; Kai Fu; Yuanhong Chen; Joyce C. Solheim; Pankaj K. Singh; Wei Song; Jixin Dong
The transcriptional co-activator Yes-associated protein, YAP, is a main effector in the Hippo tumor suppressor pathway. We recently defined a mechanism for positive regulation of YAP through CDK1-mediated mitotic phosphorylation. Here, we show that active YAP promotes pancreatic cancer cell migration, invasion and anchorage-independent growth in a mitotic phosphorylation-dependent manner. Mitotic phosphorylation is essential for YAP-driven tumorigenesis in animals. YAP reduction significantly impairs cell migration and invasion. Immunohistochemistry shows significant upregulation and nuclear localization of YAP in metastases when compared with primary tumors and normal tissue in human. Mitotic phosphorylation of YAP controls a unique transcriptional program in pancreatic cells. Expression profiles reveal LPAR3 (lysophosphatidic acid receptor 3) as a mediator for mitotic phosphorylation-driven pancreatic cell motility and invasion. Together, this work identifies YAP as a novel regulator of pancreatic cancer cell motility, invasion and metastasis, and as a potential therapeutic target for invasive pancreatic cancer.
Oncogene | 2015
Chunbo He; Xiangmin Lv; Guohua Hua; Subodh M. Lele; Steven Remmenga; Jixin Dong; John S. Davis; Cheng Wang
Mechanisms underlying ovarian cancer initiation and progression are unclear. Herein, we report that the Yes-associated protein (YAP), a major effector of the Hippo tumor suppressor pathway, interacts with ERBB signaling pathways to regulate the initiation and progression of ovarian cancer. Immunohistochemistry studies indicate that YAP expression is associated with poor clinical outcomes in patients. Overexpression or constitutive activation of YAP leads to transformation and tumorigenesis in human ovarian surface epithelial cells, and promotes growth of cancer cells in vivo and in vitro. YAP induces the expression of epidermal growth factor (EGF) receptors (EGFR, ERBB3) and production of EGF-like ligands (HBEGF, NRG1 and NRG2). HBEGF or NRG1, in turn, activates YAP and stimulates cancer cell growth. Knockdown of ERBB3 or HBEGF eliminates YAP effects on cell growth and transformation, whereas knockdown of YAP abrogates NRG1- and HBEGF-stimulated cell proliferation. Collectively, our study demonstrates the existence of HBEGF & NRGs/ERBBs/YAP/HBEGF & NRGs autocrine loop that controls ovarian cell tumorigenesis and cancer progression.
BMC Cancer | 2014
Mohammad Saeid Jami; Jin-Xuan Hou; Miao Liu; Michelle L. Varney; Hesham M. Hassan; Jixin Dong; Liying Geng; Jing Wang; Fang Yu; Xin Huang; Hong Peng; Kai Fu; Yan Li; Rakesh K. Singh; Shi Jian Ding
BackgroundKIAA1199 is a recently identified novel gene that is up-regulated in human cancer with poor survival. Our proteomic study on signaling polarity in chemotactic cells revealed KIAA1199 as a novel protein target that may be involved in cellular chemotaxis and motility. In the present study, we examined the functional significance of KIAA1199 expression in breast cancer growth, motility and invasiveness.MethodsWe validated the previous microarray observation by tissue microarray immunohistochemistry using a TMA slide containing 12 breast tumor tissue cores and 12 corresponding normal tissues. We performed the shRNA-mediated knockdown of KIAA1199 in MDA-MB-231 and HS578T cells to study the role of this protein in cell proliferation, migration and apoptosis in vitro. We studied the effects of KIAA1199 knockdown in vivo in two groups of mice (n = 5). We carried out the SILAC LC-MS/MS based proteomic studies on the involvement of KIAA1199 in breast cancer.ResultsKIAA1199 mRNA and protein was significantly overexpressed in breast tumor specimens and cell lines as compared with non-neoplastic breast tissues from large-scale microarray and studies of breast cancer cell lines and tumors. To gain deeper insights into the novel role of KIAA1199 in breast cancer, we modulated KIAA1199 expression using shRNA-mediated knockdown in two breast cancer cell lines (MDA-MB-231 and HS578T), expressing higher levels of KIAA1199. The KIAA1199 knockdown cells showed reduced motility and cell proliferation in vitro. Moreover, when the knockdown cells were injected into the mammary fat pads of female athymic nude mice, there was a significant decrease in tumor incidence and growth. In addition, quantitative proteomic analysis revealed that knockdown of KIAA1199 in breast cancer (MDA-MB-231) cells affected a broad range of cellular functions including apoptosis, metabolism and cell motility.ConclusionsOur findings indicate that KIAA1199 may play an important role in breast tumor growth and invasiveness, and that it may represent a novel target for biomarker development and a novel therapeutic target for breast cancer.
Journal of Translational Medicine | 2011
Jin-Xuan Hou; Jixin Dong; Lijun Sun; Liying Geng; J. Wang; Jialin C. Zheng; Yan Li; Julia A. Bridge; Steven H. Hinrichs; Shi-Jian Ding
Backgroundc-Met is a receptor tyrosine kinase (RTK) that is over-expressed in a variety of cancers and involved in cell growth, invasion, metastasis and angiogenesis. In this study, we investigated the role of c-Met in rhabdomyosarcoma (RMS) using its small molecule inhibitor SU11274, which has been hypothesized to be a potential therapeutic target for RMS.MethodsThe expression level of phosphorylated c-Met in RMS cell lines (RD, CW9019 and RH30) and tumor tissues was assessed by phospho-RTK array and immunohistochemistry, respectively. The inhibition effects of SU11274 on RMS cells were studied with regard to intracellular signaling, cell proliferation, cell cycle and cell migration.ResultsA high level of phosphorylated c-Met was detected in 2 alveolar RMS cell lines (CW9019 and RH30) and 14 out of 24 RMS tissue samples, whereas relatively low levels of phospho-c-Met were observed in the embryonic RMS cell line (RD). The small molecule SU11274 could significantly reduce the phosphorylation of c-Met, resulting in inhibition of cell proliferation, G1 phase arrest of cell cycle and blocking of cell migration in CW9019 and RH30 cell lines.ConclusionThese results might support the role of c-Met in the development and progression of RMS. Furthermore, the inhibitor of c-Met, SU11274, could be an effective targeting therapy reagent for RMS, especially alveolar RMS.
Oncogene | 2016
Guohua Hua; Xiangmin Lv; Chunbo He; Steven Remmenga; Kerry J. Rodabough; Jixin Dong; Liguo Yang; Subodh M. Lele; Peixin Yang; Jin Zhou; Alison M. Karst; Ronny Drapkin; John S. Davis; Cheng Wang
Accumulating evidence indicates that ovarian high-grade serous carcinoma (HGSC) originates from fallopian tube secretory epithelial cells (FTSECs). However, the molecular mechanisms underlying the initiation and progression of HGSC derived from FTSECs remains unclear. In this study, we found that the Hippo/Yes-associated protein (YAP) signaling pathway has a critical role in the initiation and progression of fallopian tube and ovarian HGSC. Importantly, YAP was overexpressed in inflammatory and cancerous fallopian tube tissues. Further, overexpression of wild-type YAP, or constitutively active YAP in immortalized FTSECs, induced cell proliferation, migration, colony formation and tumorigenesis. Moreover, the Hippo/YAP and the fibroblast growth factor (FGF) signaling pathways formed an autocrine/paracrine-positive feedback loop to drive the progression of the FTSEC-derived HGSC. Evidence in this study strongly suggests that combined therapy with inhibitors of YAP (such as verteporfin) and FGF receptors (such as BGJ398) can provide a novel therapeutic strategy to treat fallopian tube and ovarian HGSC.
Oncotarget | 2016
Poomy Pandey; Bailee Sliker; Haley L. Peters; Amit Tuli; Jonathan Herskovitz; Kaitlin Smits; Abhilasha Purohit; Rakesh K. Singh; Jixin Dong; Surinder K. Batra; Donald W. Coulter; Joyce C. Solheim
Amyloid precursor protein (APP) and its family members amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are type 1 transmembrane glycoproteins that are highly conserved across species. The transcriptional regulation of APP and APLP2 is similar but not identical, and the cleavage of both proteins is regulated by phosphorylation. APP has been implicated in Alzheimers disease causation, and in addition to its importance in neurology, APP is deregulated in cancer cells. APLP2 is likewise overexpressed in cancer cells, and APLP2 and APP are linked to increased tumor cell proliferation, migration, and invasion. In this present review, we discuss the unfolding account of these APP family members’ roles in cancer progression and metastasis.
Journal of Biological Chemistry | 2016
Xingcheng Chen; Seth Stauffer; Yuanhong Chen; Jixin Dong
Recent studies identified the adaptor protein Ajuba as a positive regulator of Yes-associated protein (YAP) oncogenic activity through inhibiting large tumor suppressor (Lats1/2) core kinases of the Hippo pathway, a signaling pathway that plays important roles in cancer. In this study, we define a novel mechanism for phospho-regulation of Ajuba in mitosis and its biological significance in cancer. We found that Ajuba is phosphorylated in vitro and in vivo by cyclin-dependent kinase 1 (CDK1) at Ser119 and Ser175 during the G2/M phase of the cell cycle. Mitotic phosphorylation of Ajuba controls the expression of multiple cell cycle regulators; however, it does not affect Hippo signaling activity, nor does it induce epithelial-mesenchymal transition. We further showed that mitotic phosphorylation of Ajuba is sufficient to promote cell proliferation and anchorage-independent growth in vitro and tumorigenesis in vivo. Collectively, our discoveries reveal a previously unrecognized mechanism for Ajuba regulation in mitosis and its role in tumorigenesis.
FEBS Journal | 2016
Seth Stauffer; Xingcheng Chen; Lin Zhang; Yuanhong Chen; Jixin Dong
KIBRA is a regulator of the Hippo‐yes‐associated protein (YAP) pathway, which plays a critical role in tumorigenesis. In the present study, we show that KIBRA is a positive regulator in prostate cancer cell proliferation and motility. We found that KIBRA is transcriptionally upregulated in androgen‐insensitive LNCaPC4‐2 and LNCaP‐C81 cells compared to parental androgen‐sensitive LNCaP cells. Ectopic expression of KIBRA enhances cell proliferation, migration and invasion in both immortalized and cancerous prostate epithelial cells. Accordingly, knockdown of KIBRA reduces migration, invasion and anchorage‐independent growth in LNCaP‐C4‐2/C81 cells. Moreover, KIBRA expression is induced by androgen signaling and KIBRA is partially required for androgen receptor signaling activation in prostate cancer cells. In line with these findings, we further show that KIBRA is overexpressed in human prostate tumors. Our studies uncover unexpected results and identify KIBRA as a tumor promoter in prostate cancer.
Oncotarget | 2015
Lin Zhang; Xingcheng Chen; Seth Stauffer; Shuping Yang; Yuanhong Chen; Jixin Dong
The transcriptional co-activator with PDZ-binding motif (TAZ) is a downstream effector of the Hippo tumor suppressor pathway, which plays important roles in cancer and stem cell biology. Hippo signaling inactivates TAZ through phosphorylation (mainly at S89). In the current study, we define a new layer of regulation of TAZ activity that is critical for its oncogenic function. We found that TAZ is phosphorylated in vitro and in vivo by the mitotic kinase CDK1 at S90, S105, T326, and T346 during the G2/M phase of the cell cycle. Interestingly, mitotic phosphorylation inactivates TAZ oncogenic activity, as the non-phosphorylatable mutant (TAZ-S89A/S90A/S105A/T326A/T346A, TAZ-5A) possesses higher activity in epithelial-mesenchymal transition, anchorage-independent growth, cell migration, and invasion when compared to the TAZ-S89A mutant. Accordingly, TAZ-5A has higher transcriptional activity compared to the TAZ-S89A mutant. Finally, we show that TAZ-S89A or TAZ-5A (to a greater extent) was sufficient to induce spindle and centrosome defects, and chromosome misalignment/missegregation in immortalized epithelial cells. Together, our results reveal a previously unrecognized connection between TAZ oncogenicity and mitotic phospho-regulation.