Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jixin Zhong is active.

Publication


Featured researches published by Jixin Zhong.


Circulation | 2011

Long-Term Dipeptidyl-Peptidase 4 Inhibition Reduces Atherosclerosis and Inflammation via Effects on Monocyte Recruitment and Chemotaxis

Zubair Shah; Thomas Kampfrath; Jeffrey A. Deiuliis; Jixin Zhong; Colleen Pineda; Zhekang Ying; Xiaohua Xu; Bo Lu; Susan D. Moffatt-Bruce; Rekha Durairaj; Qinghua Sun; Georgeta Mihai; Andrei Maiseyeu; Sanjay Rajagopalan

Background— Dipeptidyl-peptidase 4 (DPP-4) inhibitors are increasingly used to accomplish glycemic targets in patients with type II diabetes mellitus. Because DPP-4 is expressed in inflammatory cells, we hypothesized that its inhibition will exert favorable effects in atherosclerosis. Methods and Results— Male LDLR−/− mice (6 weeks) were fed a high-fat diet or normal chow diet for 4 weeks and then randomized to vehicle or alogliptin, a high-affinity DPP-4 inhibitor (40 mg · kg−1 · d−1), for 12 weeks. Metabolic parameters, blood pressure, vascular function, atherosclerosis burden, and indexes of inflammation were obtained in target tissues, including the vasculature, adipose, and bone marrow, with assessment of global and cell-specific inflammatory pathways. In vitro and in vivo assays of DPP-4 inhibition (DPP-4i) on monocyte activation/migration were conducted in both human and murine cells and in a short-term ApoE−/− mouse model. DPP-4i improved markers of insulin resistance and reduced blood pressure. DPP-4i reduced visceral adipose tissue macrophage content (adipose tissue macrophages; CD11b+, CD11c+, Ly6Chi) concomitant with upregulation of CD163. DPP-4 was highly expressed in bone marrow–derived CD11b+ cells, with DPP-4i downregulating proinflammatory genes in these cells. DPP-4i decreased aortic plaque with a striking reduction in plaque macrophages. DPP-4i prevented monocyte migration and actin polymerization in in vitro assays via Rac-dependent mechanisms and prevented in vivo migration of labeled monocytes to the aorta in response to exogenous tumor necrosis factor-&agr; and DPP-4. Conclusion— DPP-4i exerts antiatherosclerotic effects and reduces inflammation via inhibition of monocyte activation/chemotaxis. These findings have important implications for the use of this class of drugs in atherosclerosis.


Atherosclerosis | 2013

An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: Potential implications in cardiovascular disease

Jixin Zhong; Xiaoquan Rao; Sanjay Rajagopalan

The introduction of dipeptidyl peptidase 4 (DPP4) inhibitors for the treatment of Type 2 diabetes acknowledges the fundamental importance of incretin hormones in the regulation of glycemia. Small molecule inhibitors of DPP4 exert their effects via inhibition of enzymatic degradation of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). The widespread expression of DPP4 in tissues such as the vasculature and immune cells suggests that this protein may play a role in cardiovascular function. DPP4 is known to exert its effects via both enzymatic and non-enzymatic mechanisms. A soluble form of DPP4 lacking the cytoplasmic and transmembrane domain has also been recently recognized. Besides enzymatic inactivation of incretins, DPP4 also mediates degradation of many chemokines and neuropeptides. The non-enzymatic function of DPP4 plays a critical role in providing co-stimulatory signals to T cells via adenosine deaminase (ADA). DPP4 may also regulate inflammatory responses in innate immune cells such as monocytes and dendritic cells. The multiplicity of functions and targets suggests that DPP4 may play a distinct role aside from its effects on the incretin axis. Indeed recent studies in experimental models of atherosclerosis provide evidence for a robust effect for these drugs in attenuating inflammation and plaque development. Several prospective randomized controlled clinical trials in humans with established atherosclerosis are testing the effects of DPP4 inhibition on hard cardiovascular events.


Diabetes | 2013

A Potential Role for Dendritic Cell/Macrophage-Expressing DPP4 in Obesity-Induced Visceral Inflammation

Jixin Zhong; Xiaoquan Rao; Jeffrey A. Deiuliis; Zachary Braunstein; Vimal K. Narula; Jeffrey W. Hazey; Dean J. Mikami; Bradley Needleman; Abhay R. Satoskar; Sanjay Rajagopalan

Dipeptidyl peptidase-4 (DDP4) inhibitors target the enzymatic degradation of incretin peptides and represent a major advance in the treatment of type 2 diabetes. DPP4 has a number of nonenzymatic functions that involve its interaction with adenosine deaminase (ADA) and other extracellular matrix proteins. Here, we assessed the nonenzymatic role of DPP4 in regulating dendritic cell (DC)/macrophage–mediated adipose inflammation in obesity. Both obese humans and rodents demonstrated increased levels of DPP4 expression in DC/macrophage cell populations from visceral adipose tissue (VAT). The DPP4 expression increased during monocyte differentiation to DC/macrophages and with lipopolysaccharide (LPS)-induced activation of DC/macrophages. The DPP4 colocalized with membrane-bound ADA on human DCs and enhanced the ability of the latter to stimulate T-cell proliferation. The DPP4 interaction with ADA in human DC/macrophages was competitively inhibited by the addition of exogenous soluble DPP4. Knockdown of DPP4 in human DCs, but not pharmacologic inhibition of their enzymatic function, significantly attenuated the ability to activate T cells without influencing its capacity to secrete proinflammatory cytokines. The nonenzymatic function of DPP4 on DC may play a role in potentiation of inflammation in obesity by interacting with ADA. These findings suggest a novel role for the paracrine regulation of inflammation in adipose tissue by DPP4.


Circulation Research | 2015

DPP4 in Cardiometabolic Disease: Recent Insights From the Laboratory and Clinical Trials of DPP4 Inhibition

Jixin Zhong; Andrei Maiseyeu; Stephen N. Davis; Sanjay Rajagopalan

The discovery of incretin-based medications represents a major therapeutic advance in the pharmacological management of type 2 diabetes mellitus (T2DM), as these agents avoid hypoglycemia, weight gain, and simplify the management of T2DM. Dipeptidyl peptidase-4 (CD26, DPP4) inhibitors are the most widely used incretin-based therapy for the treatment of T2DM globally. DPP4 inhibitors are modestly effective in reducing HbA1c (glycated hemoglobin) (≈0.5%) and while these agents were synthesized with the understanding of the role that DPP4 plays in prolonging the half-life of incretins such as glucagon-like peptide-1 and gastric inhibitory peptide, it is now recognized that incretins are only one of many targets of DPP4. The widespread expression of DPP4 on blood vessels, myocardium, and myeloid cells and the nonenzymatic function of CD26 as a signaling and binding protein, across a wide range of species, suggest a teleological role in cardiovascular regulation and inflammation. Indeed, DPP4 is upregulated in proinflammatory states including obesity, T2DM, and atherosclerosis. Consistent with this maladaptive role, the effects of DPP4 inhibition seem to exert a protective role in cardiovascular disease at least in preclinical animal models. Although 2 large clinical trials suggest a neutral effect on cardiovascular end points, current limitations of performing trials in T2DM over a limited time horizon on top of maximal medical therapy must be acknowledged before rendering judgment on the cardiovascular efficacy of these agents. This review will critically review the science of DPP4 and the effects of DPP4 inhibitors on the cardiovascular system.


American Journal of Hypertension | 2014

Effect of GLP-1 mimetics on blood pressure and relationship to weight loss and glycemia lowering: Results of a systematic meta-analysis and meta-regression

Mohammad Katout; Hong Zhu; Jessica Rutsky; Parthy Shah; Robert D. Brook; Jixin Zhong; Sanjay Rajagopalan

BACKGROUND Incretin therapies such as glucagon-like peptide 1 (GLP-1) agonists are commonly used for the treatment of type 2 diabetes mellitus. GLP-1 mimetics, besides improving glycemic control, have been shown to influence multiple pathways regulating blood pressure (BP). We investigated the GLP-1 analogs effects on BP from published randomized studies using a meta-analytic approach. METHODS Thirty-three trials (12,469 patients) that assessed the efficacy of GLP-1 analogs on glycemic control (HbA1C) over 12-56 weeks that met additional criteria, including the availability of standardized sitting BP assessment and weight parameters, were identified. Comparator therapy included oral antiglycemic drugs or placebo. The weighted mean difference (WMD) in systolic BP (SBP) change was calculated using a random-effects model after performing a test for heterogeneity. RESULTS Forty-one percent of patients were treated with liraglutide (0.3-3mg once daily), whereas 59% were treated with exenatide (5-10 µg twice daily or 2mg weekly). GLP-1 treatment achieved a greater SBP reduction than comparator therapy (WMD = 2.22mm Hg; 95% confidence interval (CI) = -2.97 to -1.47). In the pooled analysis, GLP-1 had beneficial effects on weight loss (WMD = -2.56kg; 95% CI = -3.12 to -2.00), HbA1c reduction (WMD = -0.41%; 95% CI = -0.78 to -0.04) but was associated with a heart rate increase (WMD = 1.30 bpm; 95% CI = 0.26-2.33). In a separate meta-regression analysis, the degree of SBP change was not related to baseline BP, weight loss, or improvement in HbA1C. CONCLUSIONS This meta-analysis provides evidence that GLP-1 analogs reduce sitting SBP. These findings may support potentially favorable long-term cardiovascular outcomes.


Environmental Health Perspectives | 2013

Long-Term Exposure to Concentrated Ambient PM2.5 Increases Mouse Blood Pressure through Abnormal Activation of the Sympathetic Nervous System: A Role for Hypothalamic Inflammation

Zhekang Ying; Xiaohua Xu; Yuntao Bai; Jixin Zhong; Minjie Chen; Yijia Liang; Jinzhuo Zhao; Dongyao Liu; Masako Morishita; Qinghua Sun; Catherine Spino; Robert D. Brook; Jack R. Harkema; Sanjay Rajagopalan

Background: Exposure to particulate matter ≤ 2.5 μm in diameter (PM2.5) increases blood pressure (BP) in humans and animal models. Abnormal activation of the sympathetic nervous system may have a role in the acute BP response to PM2.5 exposure. The mechanisms responsible for sympathetic nervous system activation and its role in chronic sustenance of hypertension in response to PM2.5 exposure are currently unknown. Objectives: We investigated whether central nervous system inflammation may be implicated in chronic PM2.5 exposure-induced increases in BP and sympathetic nervous system activation. Methods: C57BL/6J mice were exposed to concentrated ambient PM2.5 (CAPs) for 6 months, and we analyzed BP using radioactive telemetric transmitters. We assessed sympathetic tone by measuring low-frequency BP variability (LF-BPV) and urinary norepinephrine excretion. We also tested the effects of acute pharmacologic inhibitors of the sympathetic nervous system and parasympathetic nervous system. Results: Long-term CAPs exposure significantly increased basal BP, paralleled by increases in LF-BPV and urinary norepinephrine excretion. The increased basal BP was attenuated by the centrally acting α2a agonist guanfacine, suggesting a role of increased sympathetic tone in CAPs exposure–induced hypertension. The increase in sympathetic tone was accompanied by an inflammatory response in the arcuate nucleus of the hypothalamus, evidenced by increased expression of pro-inflammatory genes and inhibitor kappaB kinase (IKK)/nuclear factor–kappaB (NF-κB) pathway activation. Conclusion: Long-term CAPs exposure increases BP through sympathetic nervous system activation, which may involve hypothalamic inflammation. Citation: Ying Z, Xu X, Bai Y, Zhong J, Chen M, Liang Y, Zhao J, Liu D, Morishita M, Sun Q, Spino C, Brook RD, Harkema JR, Rajagopalan S. 2014. Long-term exposure to concentrated ambient PM2.5 increases mouse blood pressure through abnormal activation of the sympathetic nervous system: a role for hypothalamic inflammation. Environ Health Perspect 122:79–86; http://dx.doi.org/10.1289/ehp.1307151


Circulation | 2011

Loss of methyl-CpG-binding domain protein 2 enhances endothelial angiogenesis and protects mice against hind-limb ischemic injury.

Xiaoquan Rao; Jixin Zhong; Shu Zhang; Yushan Zhang; Qilin Yu; Ping Yang; Mong Heng Wang; David J. Fulton; Huidong Shi; Zheng Dong; Daowen Wang; Cong-Yi Wang

Background— Despite intensive investigation, how DNA methylation influences endothelial function remains poorly understood. We used methyl-CpG–binding domain protein 2 (MBD2), an interpreter for DNA methylome–encoded information, to dissect the impact of DNA methylation on endothelial function in both physiological and pathophysiological states. Methods and Results— Human umbilical vein endothelial cells under normal conditions express moderate levels of MBD2, but knockdown of MBD2 by siRNA significantly enhanced angiogenesis and provided protection against H2O2-induced apoptosis. Remarkably, Mbd2−/− mice were protected against hind-limb ischemia evidenced by the significant improvement in perfusion recovery, along with increased capillary and arteriole formation. Loss of MBD2 activated endothelial survival and proangiogenic signals downstream of vascular endothelial growth factor signaling characterized by an increase in endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor receptor 2 expression, along with enhanced extracellular signal-regulated kinase 1/2 activation and BCL-2 expression. Mechanistic studies confirmed the methylation of CpG elements in the eNOS and vascular endothelial growth factor receptor 2 promoter. MBD2 binds to these methylated CpG elements and suppresses eNOS promoter activity. On ischemic insult, key endothelial genes such as eNOS and vascular endothelial growth factor receptor 2 undergo a DNA methylation turnover, and MBD2 interprets the changes of DNA methylation to suppress their expressions. Moreover, MBD2 modulation of eNOS expression is likely confined to endothelial cells because nonendothelial cells such as splenocytes fail to express eNOS after loss of MBD2. Conclusions— We provided direct evidence supporting that DNA methylation regulates endothelial function, which forms the molecular basis for understanding how environmental insults (epigenetic factor) affect the genome to modify disease susceptibility. Because MBD2 itself does not affect the methylation of DNA and is dispensable for normal physiology in mice, it could be a viable epigenetic target for modulating endothelial function in disease states.


Circulation Research | 2014

CD36-Dependent 7-Ketocholesterol Accumulation in Macrophages Mediates Progression of Atherosclerosis in Response to Chronic Air Pollution Exposure

Xiaoquan Rao; Jixin Zhong; Andrei Maiseyeu; Bhavani Gopalakrishnan; Frederick A. Villamena; Lung Chi Chen; Jack R. Harkema; Qinghua Sun; Sanjay Rajagopalan

Rationale: Air pollution exposure has been shown to potentiate plaque progression in humans and animals. Our previous studies have suggested a role for oxidized lipids in mediating adverse vascular effect of air pollution. However, the types of oxidized lipids formed in response to air pollutants and how this occurs and their relevance to atherosclerosis are not fully understood. Objective: To investigate the mechanisms by which particulate matter <2.5 &mgr;m (PM2.5) induces progression of atherosclerosis. Methods and Results: Atherosclerosis-prone ApoE−/− or LDLR−/− mice were exposed to filtered air or concentrated ambient PM2.5 using a versatile aerosol concentrator enrichment system for 6 months. PM2.5 increased 7-ketocholesterol (7-KCh), an oxidatively modified form of cholesterol, in plasma intermediate density lipoprotein/low-density lipoprotein fraction and in aortic plaque concomitant with progression of atherosclerosis and increased CD36 expression in plaque macrophages from PM2.5-exposed mice. Macrophages isolated from PM2.5-exposed mice displayed increased uptake of oxidized lipids without alterations in their efflux capacity. Consistent with these finding, CD36-positive macrophages displayed a heightened capacity for oxidized lipid uptake. Deficiency of CD36 on hematopoietic cells diminished the effect of air pollution on 7-KCh accumulation, foam cell formation, and atherosclerosis. Conclusions: Our results suggest a potential role for CD36-mediated abnormal accumulations of oxidized lipids, such as 7-KCh, in air pollution–induced atherosclerosis progression.


PLOS ONE | 2010

Loss of Jak2 selectively suppresses DC-mediated innate immune response and protects mice from lethal dose of LPS-induced septic shock.

Jixin Zhong; Ping Yang; Kenjiro Muta; Robert Dong; Mario B. Marrero; Feili Gong; Cong Yi Wang

Given the importance of Jak2 in cell signaling, a critical role for Jak2 in immune cells especially dendritic cells (DCs) has long been proposed. The exact function for Jak2 in DCs, however, remained poorly understood as Jak2 deficiency leads to embryonic lethality. Here we established Jak2 deficiency in adult Cre+/+Jak2fl/fl mice by tamoxifen induction. Loss of Jak2 significantly impaired DC development as manifested by reduced BMDC yield, smaller spleen size and reduced percentage of DCs in total splenocytes. Jak2 was also crucial for the capacity of DCs to mediate innate immune response. Jak2−/− DCs were less potent in response to inflammatory stimuli and showed reduced capacity to secrete proinflammatory cytokines such as TNFα and IL-12. As a result, Jak2−/− mice were defective for the early clearance of Listeria after infection. However, their potency to mediate adaptive immune response was not affected. Unlike DCs, Jak2−/− macrophages showed similar capacity secretion of proinflammatory cytokines, suggesting that Jak2 selectively modulates innate immune response in a DC-dependent manner. Consistent with these results, Jak2−/− mice were remarkably resistant to lethal dose of LPS-induced septic shock, a deadly sepsis characterized by the excessive innate immune response, and adoptive transfer of normal DCs restored their susceptibility to LPS-induced septic shock. Mechanistic studies revealed that Jak2/SATA5 signaling is pivotal for DC development and maturation, while the capacity for DCs secretion of proinflammatory cytokines is regulated by both Jak2/STAT5 and Jak2/STAT6 signaling.


Diabetes | 2014

T-Cell Costimulation Protects Obesity-Induced Adipose Inflammation and Insulin Resistance

Jixin Zhong; Xiaoquan Rao; Zachary Braunstein; Anne Taylor; Vimal K. Narula; Jeffrey W. Hazey; Dean J. Mikami; Bradley Needleman; Jessica Rutsky; Qinghua Sun; Jeffrey A. Deiuliis; Abhay R. Satoskar; Sanjay Rajagopalan

A key pathophysiologic role for activated T-cells in mediating adipose inflammation and insulin resistance (IR) has been recently postulated. However, mechanisms underlying their activation are poorly understood. In this study, we demonstrated a previously unrecognized homeostatic role for the costimulatory B7 molecules (CD80 and CD86) in preventing adipose inflammation. Instead of promoting inflammation, which was found in many other disease conditions, B7 costimulation reduced adipose inflammation by maintaining regulatory T-cell (Treg) numbers in adipose tissue. In both humans and mice, expression of CD80 and CD86 was negatively correlated with the degree of IR and adipose tissue macrophage infiltration. Decreased B7 expression in obesity appeared to directly impair Treg proliferation and function that lead to excessive proinflammatory macrophages and the development of IR. CD80/CD86 double knockout (B7 KO) mice had enhanced adipose macrophage inflammation and IR under both high-fat and normal diet conditions, accompanied by reduced Treg development and proliferation. Adoptive transfer of Tregs reversed IR and adipose inflammation in B7 KO mice. Our results suggest an essential role for B7 in maintaining Tregs and adipose homeostasis and may have important implications for therapies that target costimulation in type 2 diabetes.

Collaboration


Dive into the Jixin Zhong's collaboration.

Top Co-Authors

Avatar

Sanjay Rajagopalan

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun-Fa Xu

Guangdong Medical College

View shared research outputs
Top Co-Authors

Avatar

Ping Yang

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge