Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jixun Dai is active.

Publication


Featured researches published by Jixun Dai.


Nucleic Acids Research | 2006

Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution

Attila Ambrus; Ding Chen; Jixun Dai; Tiffanie Bialis; Roger A. Jones; Danzhou Yang

Human telomeric DNA consists of tandem repeats of the sequence d(TTAGGG). The formation and stabilization of DNA G-quadruplexes in the human telomeric sequence have been shown to inhibit the activity of telomerase, thus the telomeric DNA G-quadruplex has been considered as an attractive target for cancer therapeutic intervention. However, knowledge of the intact human telomeric G-quadruplex structure(s) formed under physiological conditions is a prerequisite for structure-based rational drug design. Here we report the folding structure of the human telomeric sequence in K+ solution determined by NMR. Our results demonstrate a novel, unprecedented intramolecular G-quadruplex folding topology with hybrid-type mixed parallel/antiparallel G-strands. This telomeric G-quadruplex structure contains three G-tetrads with mixed G-arrangements, which are connected consecutively with a double-chain-reversal side loop and two lateral loops, each consisting of three nucleotides TTA. This intramolecular hybrid-type telomeric G-quadruplex structure formed in K+ solution is distinct from those reported on the 22 nt Tel22 in Na+ solution and in crystalline state in the presence of K+, and appears to be the predominant conformation for the extended 26 nt telomeric sequence Tel26 in the presence of K+, regardless of the presence or absence of Na+. Furthermore, the addition of K+ readily converts the Na+-form conformation to the K+-form hybrid-type G-quadruplex. Our results explain all the reported experimental data on the human telomeric G-quadruplexes formed in the presence of K+, and provide important insights for understanding the polymorphism and interconversion of various G-quadruplex structures formed within the human telomeric sequence, as well as the effects of sequence and cations. This hybrid-type G-quadruplex topology suggests a straightforward pathway for the secondary structure formation with effective packing within the extended human telomeric DNA. The hybrid-type telomeric G-quadruplex is most likely to be of pharmacological relevance, and the distinct folding topology of this G-quadruplex suggests that it can be specifically targeted by G-quadruplex interactive small molecule drugs.


Nucleic Acids Research | 2007

Structure of the Hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence

Jixun Dai; Megan Carver; Chandanamali Punchihewa; Roger A. Jones; Danzhou Yang

Formation of the G-quadruplex in the human telomeric sequence can inhibit the activity of telomerase, thus the intramolecular telomeric G-quadruplexes have been considered as an attractive anticancer target. Information of intramolecular telomeric G-quadruplex structures formed under physiological conditions is important for structure-based drug design. Here, we report the first structure of the major intramolecular G-quadruplex formed in a native, non-modified human telomeric sequence in K+ solution. This is a hybrid-type mixed parallel/antiparallel-G-stranded G-quadruplex, one end of which is covered by a novel T:A:T triple capping structure. This structure (Hybrid-2) and the previously reported Hybrid-1 structure differ in their loop arrangements, strand orientations and capping structures. The distinct capping structures appear to be crucial for the favored formation of the specific hybrid-type intramolecular telomeric G-quadruplexes, and may provide specific binding sites for drug targeting. Our study also shows that while the hybrid-type G-quadruplexes appear to be the major conformations in K+ solution, human telomeric sequences are always in equilibrium between Hybrid-1 and Hybrid-2 structures, which is largely determined by the 3′-flanking sequence. Furthermore, both hybrid-type G-quadruplexes suggest a straightforward means for multimer formation with effective packing in the human telomeric sequence and provide important implications for drug targeting of G-quadruplexes in human telomeres.


Biochimie | 2008

Polymorphism of human telomeric quadruplex structures

Jixun Dai; Megan Carver; Danzhou Yang

Human telomeric DNA consists of tandem repeats of the sequence d(TTAGGG). Compounds that can stabilize the intramolecular DNA G-quadruplexes formed in the human telomeric sequence have been shown to inhibit the activity of telomerase and telomere maintenance, thus the telomeric DNA G-quadruplex has been considered as an attractive target for cancer therapeutic intervention. Knowledge of intramolecular human telomeric G-quadruplex structure(s) formed under physiological conditions is important for structure-based rational drug design and thus has been the subject of intense investigation. This review will give an overview of recent progress on the intramolecular human telomeric G-quadruplex structures formed in K+ solution. It will also give insight into the structure polymorphism of human telomeric sequences and its implications for drug targeting.


Nucleic Acids Research | 2007

Structure of the intramolecular human telomeric G-quadruplex in potassium solution: a novel adenine triple formation

Jixun Dai; Chandanamali Punchihewa; Attila Ambrus; Ding Chen; Roger A. Jones; Danzhou Yang

We report the NMR solution structure of the intramolecular G-quadruplex formed in human telomeric DNA in K+. The hybrid-type telomeric G-quadruplex consists of three G-tetrads linked with mixed parallel–antiparallel G-strands, with the bottom two G-tetrads having the same G-arrangement (anti:anti:syn:anti) and the top G-tetrad having the reversed G-arrangement (syn:syn:anti:syn). The three TTA loop segments adopt different conformations, with the first TTA assuming a double-chain-reversal loop conformation, and the second and third TTA assuming lateral loop conformations. The NMR structure is very well defined, including the three TTA loops and the two flanking sequences at 5′- and 3′-ends. Our study indicates that the three loop regions interact with the core G-tetrads in a specific way that defines and stabilizes the unique human telomeric G-quadruplex structure in K+. Significantly, a novel adenine triple platform is formed with three naturally occurring adenine residues, A21, A3 and A9, capping the top tetrad of the hybrid-type telomeric G-quadruplex. This adenine triple is likely to play an important role in the formation of a stable human telomeric G-quadruplex structure in K+. The unique human telomeric G-quadruplex structure formed in K+ suggests that it can be specifically targeted for anticancer drug design.


Nucleic Acids Research | 2006

NMR solution structure of the major G-quadruplex structure formed in the human BCL2 promoter region

Jixun Dai; Ding Chen; Roger A. Jones; Laurence H. Hurley; Danzhou Yang

BCL2 protein functions as an inhibitor of cell apoptosis and has been found to be aberrantly expressed in a wide range of human diseases. A highly GC-rich region upstream of the P1 promoter plays an important role in the transcriptional regulation of BCL2. Here we report the NMR solution structure of the major intramolecular G-quadruplex formed on the G-rich strand of this region in K+ solution. This well-defined mixed parallel/antiparallel-stranded G-quadruplex structure contains three G-tetrads of mixed G-arrangements, which are connected with two lateral loops and one side loop, and four grooves of different widths. The three loops interact with the core G-tetrads in a specific way that defines and stabilizes the overall G-quadruplex structure. The loop conformations are in accord with the experimental mutation and footprinting data. The first 3-nt loop adopts a lateral loop conformation and appears to determine the overall folding of the BCL2 G-quadruplex. The third 1-nt double-chain-reversal loop defines another example of a stable parallel-stranded structural motif using the G3NG3 sequence. Significantly, the distinct major BCL2 promoter G-quadruplex structure suggests that it can be specifically involved in gene modulation and can be an attractive target for pathway-specific drug design.


Nucleic Acids Research | 2010

Structure of a two-G-tetrad intramolecular G-quadruplex formed by a variant human telomeric sequence in K+ solution: insights into the interconversion of human telomeric G-quadruplex structures

Zhenjiang Zhang; Jixun Dai; Elizabeth Veliath; Roger A. Jones; Danzhou Yang

Human telomeric DNA G-quadruplex has been considered as an attractive target for cancer therapeutic intervention. The telomeric sequence shows intrinsic structure polymorphism. Here we report a novel intramolecular G-quadruplex structure formed by a variant human telomeric sequence in K+ solution. This sequence forms a basket-type intramolecular G-quadruplex with only two G-tetrads but multiple-layer capping structures formed by loop residues. While it is shown that this structure can only be detected in the specifically truncated telomeric sequences without any 5′-flanking residues, our results suggest that this two-G-tetrad conformation is likely to be an intermediate form of the interconversion of different telomeric G-quadruplex conformations.


Nucleic Acids Research | 2011

c-MYC promoter G-quadruplex formed at the 5'-end of NHE III1 element: insights into biological relevance and parallel-stranded G-quadruplex stability.

Raveendra I. Mathad; Emmanuel Hatzakis; Jixun Dai; Danzhou Yang

We studied the structures and stabilities of G-quadruplexes formed in Myc1234, the region containing the four consecutive 5′ runs of guanines of c-MYC promoter NHE III1, which have recently been shown to form in a supercoiled plasmid system in aqueous solution. We determined the NMR solution structure of the 1:2:1 parallel-stranded loop isomer, one of the two major loop isomers formed in Myc1234 in K+ solution. This major loop isomer, although sharing the same folding structure, appears to be markedly less stable than the major loop isomer formed in the single-stranded c-MYC NHE III1 oligonucleotide, the Myc2345 G-quadruplex. Our NMR structures indicated that the different thermostabilities of the two 1:2:1 parallel c-MYC G-quadruplexes are likely caused by the different base conformations of the single nucleotide loops. The observation of the formation of the Myc1234 G-quadruplex in the supercoiled plasmid thus points to the potential role of supercoiling in the G-quadruplex formation in promoter sequences. We also performed a systematic thermodynamic analysis of modified c-MYC NHE III1 sequences, which provided quantitative measure of the contributions of various loop sequences to the thermostabilities of parallel-stranded G-quadruplexes. This information is important for understanding the equilibrium of promoter G-quadruplex loop isomers and for their drug targeting.


Journal of the American Chemical Society | 2009

A direct and nondestructive approach to determine the folding structure of the I-motif DNA secondary structure by NMR

Jixun Dai; Attila Ambrus; Laurence H. Hurley; Danzhou Yang

I-motifs are four-stranded DNA secondary structures formed in C-rich DNA sequences and consist of parallel-stranded DNA duplexes zipped together in an antiparallel orientation by intercalated, hemiprotonated cytosine(+)-cytosine base pairs. I-motif structures have been indicated to form in various regions of the human genome as well as in nanotechnological applications. While NMR is a major tool for structural studies of I-motifs, the determination of the folding topologies of unimolecular I-motifs has been a challenging and arduous task using conventional NMR spectral assignment strategies, due to the inherent sequence redundancy of the C-rich strands in the formation of unimolecular I-motif structures. We report here a direct and nondestructive method that can be utilized to unambiguously determine the hemiprotonated C(+)-C base pairs and thus the folding topology of unimolecular I-motif structures formed from native C-rich DNA sequences. The reported approach uses affordable low-enrichment site-specific labeling. More significantly, the reported method can directly and unambiguously determine the equilibrating multiple conformations coexisting in a single DNA sequence, which would be a very difficult task using conventional assignment strategies. Additionally, this method can be applied to the direct detection of the base-paired thymines that are involved in the capping structures.


PLOS ONE | 2010

I-Motif Structures Formed in the Human c-MYC Promoter Are Highly Dynamic-Insights into Sequence Redundancy and I-Motif Stability

Jixun Dai; Emmanuel Hatzakis; Laurence H. Hurley; Danzhou Yang

The GC-rich nuclease hypersensitivity element III1 (NHE III1) of the c-MYC promoter largely controls the transcriptional activity of the c-MYC oncogene. The C-rich strand in this region can form I-motif DNA secondary structures. We determined the folding pattern of the major I-motif formed in the NHE III1, which can be formed at near-neutral pH. While we find that the I-motif formed in the four 3′ consecutive runs of cytosines appears to be the most favored, our results demonstrate that the C-rich strand of the c-MYC NHE III1 exhibits a high degree of dynamic equilibration. Using a trisubstituted oligomer of this region, we determined the formation of two equilibrating loop isomers, one of which contains a flipped-out cytosine. Our results indicate that the intercalative cytosine+–cytosine base pairs are not always necessary for an intramolecular I-motif. The dynamic character of the c-MYC I-motif is intrinsic to the NHE III1 sequence and appears to provide stability to the c-MYC I-motif.


Cancer Research | 2011

Abstract LB-200: Solution structure of c-Myc G-quadruplex complex with a quindoline compound

Jixun Dai; Megan Carver; Raveendra I. Mathad; Lawrence Hurley; Danzhou Yang

Overexpression of the c-Myc oncogene is associated with a broad spectrum of human cancers. Targeting transcriptional control of c-Myc represents an attractive means for cancer molecular therapeutics. A highly conserved nuclear hypersensitivity element III1 (NHE III1) of the c-Myc promoter controls 80–90% of the c-Myc transcription. It can form transcriptionally active and silenced forms, and the formation of DNA G-quadruplex structures has been shown to be critical for c-Myc transcriptional silencing. Small molecules that stabilize the c-Myc G-quadruplex have been shown to suppress c-Myc transcription and are anti-tumorigenic. We have determined the NMR structure of a 2:1 complex of the c-Myc quadruplex with a quindoline compound. This is the first molecular structure of a drug complex with a natural oncogene promoter quadruplex. The solution structure of this 2:1 quindoline-G-quadruplex complex shows unexpected features, including the drug-induced reorientation of the flanking sequences to form a new binding pocket. While both 3′ and 5′ complexes show overall similar features, there are identifiable differences that emphasize the importance of both stacking and electronic interactions. We identified the importance of the two flanking bases as well as the shape of the ligand in determining drug-binding specificity. The structural information will be crucial for structure-based rational drug design of molecules that specifically target the c-Myc silencer element. It also provides important implications for rational design of drugs that bind to unimolecular parallel G-quadruplexes commonly found in promoter elements. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr LB-200. doi:10.1158/1538-7445.AM2011-LB-200

Collaboration


Dive into the Jixun Dai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ding Chen

University of Arizona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge