Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiyan Qi is active.

Publication


Featured researches published by Jiyan Qi.


Nature plants | 2016

The rubber tree genome reveals new insights into rubber production and species adaptation.

Chaorong Tang; Meng Yang; Yongjun Fang; Yingfeng Luo; Shenghan Gao; Xiaohu Xiao; Zewei An; Binhui Zhou; Bing Zhang; Xinyu Tan; Hoong Yeet Yeang; Yunxia Qin; Jianghua Yang; Qiang Lin; Hailiang Mei; Pascal Montoro; Xiangyu Long; Jiyan Qi; Yuwei Hua; Zilong He; Min Sun; Wenjie Li; Xia Zeng; Han Cheng; Ying Liu; Jin Yang; Weimin Tian; Nansheng Zhuang; Rizhong Zeng; Dejun Li

The Para rubber tree (Hevea brasiliensis) is an economically important tropical tree species that produces natural rubber, an essential industrial raw material. Here we present a high-quality genome assembly of this species (1.37 Gb, scaffold N50 = 1.28 Mb) that covers 93.8% of the genome (1.47 Gb) and harbours 43,792 predicted protein-coding genes. A striking expansion of the REF/SRPP (rubber elongation factor/small rubber particle protein) gene family and its divergence into several laticifer-specific isoforms seem crucial for rubber biosynthesis. The REF/SRPP family has isoforms with sizes similar to or larger than SRPP1 (204 amino acids) in 17 other plants examined, but no isoforms with similar sizes to REF1 (138 amino acids), the predominant molecular variant. A pivotal point in Hevea evolution was the emergence of REF1, which is located on the surface of large rubber particles that account for 93% of rubber in the latex (despite constituting only 6% of total rubber particles, large and small). The stringent control of ethylene synthesis under active ethylene signalling and response in laticifers resolves a longstanding mystery of ethylene stimulation in rubber production. Our study, which includes the re-sequencing of five other Hevea cultivars and extensive RNA-seq data, provides a valuable resource for functional genomics and tools for breeding elite Hevea cultivars.


FEBS Journal | 2014

Structure and expression profile of the sucrose synthase gene family in the rubber tree: indicative of roles in stress response and sucrose utilization in the laticifers

Xiaohu Xiao; Chaorong Tang; Yongjun Fang; Meng Yang; Binhui Zhou; Jiyan Qi; Yi Zhang

Sucrose synthase (Sus, EC 2.4.1.13) is widely recognized as a key enzyme in sucrose metabolism in plants. However, nothing is known about this gene family in Hevea brasiliensis (para rubber tree). Here, we identified six Sus genes in H. brasiliensis that comprise the entire Sus family in this species. Analysis of the gene structure and phylogeny of the Sus genes demonstrates evolutionary conservation in the Sus families across Hevea and other plant species. The expression of Sus genes was investigated via Solexa sequencing and quantitative PCR in various tissues, at various phases of leaf development, and under abiotic stresses and ethylene treatment. The Sus genes exhibited distinct but partially redundant expression profiles. Each tissue has one abundant Sus isoform, with HbSus3, 4 and 5 being the predominant isoforms in latex (cytoplasm of rubber‐producing laticifers), bark and root, respectively. HbSus1 and 6 were barely expressed in any tissue examined. In mature leaves (source), all HbSus genes were expressed at low levels, but HbSus3 and 4 were abundantly expressed in immature leaves (sink). Low temperature and drought treatments conspicuously induced HbSus5 expression in root and leaf, suggesting a role in stress responses. HbSus2 and 3 transcripts were decreased by ethylene treatment, consistent with the reduced sucrose‐synthesizing activity of Sus enzymes in the latex in response to ethylene stimulation. Our results are beneficial to further determination of functions for the Sus genes in Hevea trees, especially roles in regulating latex regeneration.


PLOS ONE | 2013

Comparative analysis of latex transcriptome reveals putative molecular mechanisms underlying super productivity of Hevea brasiliensis.

Chaorong Tang; Xiaohu Xiao; Heping Li; Yujie Fan; Jianghua Yang; Jiyan Qi; Huibo Li

Increasing demand for natural rubber prompts studies into the mechanisms governing the productivity of rubber tree ( Hevea brasiliensis ). It is very interesting to notice that a rubber tree of clone PR107 in Yunnan, China is reported to yield more than 20 times higher than the average rubber tree. This super-high-yielding (SHY) rubber tree (designated as SY107), produced 4.12 kg of latex (cytoplasm of rubber producing laticifers, containing about 30% of rubber) per tapping, more than 7-fold higher than that of the control. This rubber tree is therefore a good material to study how the rubber production is regulated at a molecular aspect. A comprehensive cDNA-AFLP transcript profiling was performed on the latex of SY107 and its average counterparts by using the 384 selective primer pairs for two restriction enzyme combinations (ApoI/MseI and TaqI/MseI). A total of 746 differentially expressed (DE) transcript-derived fragments (TDFs) were identified, of which the expression patterns of 453 TDFs were further confirmed by RT-PCR. These RT-PCR confirmed TDFs represented 352 non-redundant genes, of which 215 had known or partially known functions and were grouped into 10 functional categories. The top three largest categories were transcription and protein synthesis (representing 24.7% of the total genes), defense and stress (15.3%), and primary and secondary metabolism (14.0%). Detailed analysis of the DE-genes suggests notable characteristics of SHY phenotype in improved sucrose loading capability, rubber biosynthesis-preferred sugar utilization, enhanced general metabolism and timely stress alleviation. However, the SHY phenotype has little correlation with rubber-biosynthesis pathway genes.


Plant Physiology and Biochemistry | 2015

Molecular identification and characterization of the pyruvate decarboxylase gene family associated with latex regeneration and stress response in rubber tree.

Xiangyu Long; Bin He; Chuang Wang; Yongjun Fang; Jiyan Qi; Chaorong Tang

In plants, ethanolic fermentation occurs not only under anaerobic conditions but also under aerobic conditions, and involves carbohydrate and energy metabolism. Pyruvate decarboxylase (PDC) is the first and the key enzyme of ethanolic fermentation, which branches off the main glycolytic pathway at pyruvate. Here, four PDC genes were isolated and identified in a rubber tree, and the protein sequences they encode are very similar. The expression patterns of HbPDC4 correlated well with tapping-simulated rubber productivity in virgin rubber trees, indicating it plays an important role in regulating glycometabolism during latex regeneration. HbPDC1, HbPDC2 and HbPDC3 had striking expressional responses in leaves and bark to drought, low temperature and high temperature stresses, indicating that the HbPDC genes are involve in self-protection and defense in response to various abiotic and biotic stresses during rubber tree growth and development. To understand ethanolic fermentation in rubber trees, it will be necessary to perform an in-depth study of the regulatory pathways controlling the HbPDCs in the future.


Gene | 2015

Validation of reference genes for quantitative real-time PCR during latex regeneration in rubber tree.

Xiangyu Long; Bin He; Xinsheng Gao; Yunxia Qin; Jianghua Yang; Yongjun Fang; Jiyan Qi; Chaorong Tang

In rubber tree, latex regeneration is one of the decisive factors influencing the rubber yield, although its molecular regulation is not well known. Quantitative real-time PCR (qPCR) is a popular and powerful tool used to understand the molecular mechanisms of latex regeneration. However, the suitable reference genes required for qPCR are not available to investigate the expressions of target genes during latex regeneration. In this study, 20 candidate reference genes were selected and evaluated for their expression stability across the samples during the process of latex regeneration. All reference genes showed a relatively wide range of the threshold cycle values, and their stability was validated by four different algorithms (comparative delta Ct method, Bestkeeper, NormFinder and GeNorm). Three softwares (comparative delta Ct method, NormFinder and GeNorm) exported similar results that identify UBC4, ADF, UBC2a, eIF2 and ADF4 as the top five suitable references, and 18S as the least suitable one. The application of the screened references would improve accuracy and reliability of gene expression analysis in latex regeneration experiments.


FEBS Open Bio | 2017

The calcium‐dependent protein kinase (CDPK) and CDPK‐related kinase gene families in Hevea brasiliensis—comparison with five other plant species in structure, evolution, and expression

Xiaohu Xiao; Meng Yang; Jin‐Lei Sui; Jiyan Qi; Yongjun Fang; Songnian Hu; Chaorong Tang

Calcium‐dependent protein kinases (CDPKs or CPKs) play important roles in various physiological processes of plants, including growth and development, stress responses and hormone signaling. Although the CDPK gene family has been characterized in several model plants, little is known about this gene family in Hevea brasiliensis (the Para rubber tree). Here, we characterize the entire H. brasiliensis CDPK and CDPK‐related kinase (CRK) gene families comprising 30 CDPK genes (HbCPK1 to 30) and nine CRK genes (HbCRK1 to 9). Structure and phylogeny analyses of these CDPK and CRK genes demonstrate evolutionary conservation in these gene families across H. brasiliensis and other plant species. The expression of HbCPK and HbCRK genes was investigated via Solexa sequencing in a range of experimental conditions (different tissues, phases of leaf development, ethylene treatment, and various abiotic stresses). The results suggest that HbCPK and HbCRK genes are important components in growth, development, and stress responses of H. brasiliensis. Parallel studies on the CDPK and CRK gene families were also extended to five other plant species (Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Manihot esculenta, and Ricinus communis). The CDPK and CRK genes from different plant species that exhibit similar expression patterns tend to cluster together, suggesting a coevolution of gene structure and expression behavior in higher plants. The results serve as a foundation to further functional studies of these gene families in H. brasiliensis as well as in the whole plant kingdom.


Tree Physiology | 2018

Characterization of the rubber tree metallothionein family reveals a role in mitigating the effects of reactive oxygen species associated with physiological stress

Yacheng Huang; Yongjun Fang; Xiangyu Long; Linya Liu; Jia Wang; Jinheng Zhu; Yanyan Ma; Yunxia Qin; Jiyan Qi; Xinwen Hu; Chaorong Tang

Metallothioneins (MTs) as reactive oxygen species (ROS) scavengers play important roles in stress response and heavy metal homeostasis. In Hevea brasiliensis (the para rubber tree that is the source of commercial natural rubber) and in other trees, the functions of MTs are not well understood. Latex exudes when the rubber tree is tapped. The flow of latex and its regeneration can be enhanced by tapping, wounding and ethylene treatment, all of which produce ROS as a by-product. Here, we show the presence of four MT genes in H. brasiliensis, comprising three Type 2 (HbMT2, -2a and -2b) and one Type 3 (HbMT3L) isoforms, representing one of the smallest MT gene families among angiosperms. The four HbMTs exhibited distinct tissue expression patterns: HbMT2 and HbMT3L mainly in leaves, HbMT2a specifically in flowers and HbMT2b in diverse tissues. The expression of HbMT2b, an isoform present in latex, decreased significantly in the latex following the stress-inducing treatments of tapping, wounding and ethephon (an ethylene generator). The expressions of the leaf-abundant isoforms, HbMT2 and -3L were up-regulated following pathogenic fungus infection and high-temperature stress, but down-regulated by low-temperature stress. These reactions were consistent with multiple defense- and hormone-responsive cis-acting elements in the HbMT promoters. Nine transcription factors were shown to implicate in the high-temperature responsiveness of HbMT2 and -3L in leaves. Overexpression of HbMT2 in Escherichia coli enhanced the bacteriums tolerance to heavy metals and ROS, consistent with its predicted role as an ROS scavenger. Taken together, our results, along with other relevant studies, suggest an important role of HbMTs in latex regeneration as well as species adaptation via the regulation of ROS homeostasis.


Frontiers in Plant Science | 2018

Characterization of Sugar Contents and Sucrose Metabolizing Enzymes in Developing Leaves of Hevea brasiliensis

Jinheng Zhu; Jiyan Qi; Yongjun Fang; Xiaohu Xiao; Jiuhui Li; Jixian Lan; Chaorong Tang

Sucrose-metabolizing enzymes in plant leaves have hitherto been investigated mainly in temperate plants, and rarely conducted in tandem with gene expression and sugar analysis. Here, we investigated the sugar content, gene expression, and the activity of sucrose-metabolizing enzymes in the leaves of Hevea brasiliensis, a tropical tree widely cultivated for natural rubber. Sucrose, fructose and glucose were the major sugars detected in Hevea leaves at four developmental stages (I to IV), with starch and quebrachitol as minor saccharides. Fructose and glucose contents increased until stage III, but decreased strongly at stage IV (mature leaves). On the other hand, sucrose increased continuously throughout leaf development. Activities of all sucrose-cleaving enzymes decreased markedly at maturation, consistent with transcript decline for most of their encoding genes. Activity of sucrose phosphate synthase (SPS) was low in spite of its high transcript levels at maturation. Hence, the high sucrose content in mature leaves was not due to increased sucrose-synthesizing activity, but more to the decline in sucrose cleavage. Gene expression and activities of sucrose-metabolizing enzymes in Hevea leaves showed striking differences compared with other plants. Unlike in most other species where vacuolar invertase predominates in sucrose cleavage in developing leaves, cytoplasmic invertase and sucrose synthase (cleavage direction) also featured prominently in Hevea. Whereas SPS is normally responsible for sucrose synthesis in plant leaves, sucrose synthase (synthesis direction) was comparable or higher than that of SPS in Hevea leaves. Mature Hevea leaves had an unusually high sucrose:starch ratio of about 11, the highest reported to date in plants.


FEBS Open Bio | 2017

The SWEET gene family in Hevea brasiliensis – its evolution and expression compared with four other plant species

Jin‐Lei Sui; Xiaohu Xiao; Jiyan Qi; Yongjun Fang; Chaorong Tang

SWEET proteins play an indispensable role as a sugar efflux transporter in plant development and stress responses. The SWEET genes have previously been characterized in several plants. Here, we present a comprehensive analysis of this gene family in the rubber tree, Hevea brasiliensis. There are 36 members of the SWEET gene family in this species, making it one of the largest families in plant genomes sequenced so far. Structure and phylogeny analyses of these genes in Hevea and in other species demonstrated broad evolutionary conservation. RNA‐seq analyses revealed that SWEET2, 16, and 17 might represent the main evolutionary direction of SWEET genes in plants. Our results in Hevea suggested the involvement of HbSWEET1a, 2e, 2f, and 3b in phloem loading, HbSWEET10a and 16b in laticifer sugar transport, and HbSWEET9a in nectary‐specific sugar transport. Parallel studies of RNA‐seq analyses extended to three other plant species (Manihot esculenta, Populus trichocarpa, and Arabidopsis thaliana) produced findings which implicated MeSWEET10a, 3a, and 15b in M. esculenta storage root development, and the involvement of PtSWEET16b and PtSWEET16d in P. trichocarpa xylem development. RT‐qPCR results further revealed that HbSWEET10a, 16b, and 1a play important roles in phloem sugar transport. The results from this study provide a foundation not only for further investigation into the functionality of the SWEET gene family in Hevea, especially in its sugar transport for latex production, but also for related studies of this gene family in the plant kingdom.


Journal of Biochemical and Biophysical Methods | 2007

A convenient and efficient protocol for isolating high-quality RNA from latex of Hevea brasiliensis (para rubber tree).

Chaorong Tang; Jiyan Qi; Heping Li; Cunliang Zhang; Yuekun Wang

Collaboration


Dive into the Jiyan Qi's collaboration.

Top Co-Authors

Avatar

Chaorong Tang

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Yongjun Fang

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaohu Xiao

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Jianghua Yang

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Binhui Zhou

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiangyu Long

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Yunxia Qin

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Meng Yang

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Bin He

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Heping Li

Chinese Academy of Tropical Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge