Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiying Sun is active.

Publication


Featured researches published by Jiying Sun.


The EMBO Journal | 2004

Heme regulates gene expression by triggering Crm1-dependent nuclear export of Bach1.

Hiroshi Suzuki; Satoshi Tashiro; Shusuke Hira; Jiying Sun; Chikara Yamazaki; Yukari Zenke; Masao Ikeda-Saito; Minoru Yoshida; Kazuhiko Igarashi

Bach1 is a transcriptional repressor of heme oxygenase‐1 and β‐globin genes, both of which are known to be transcriptionally induced by heme. To test the hypothesis that heme regulates the activity of Bach1, we expressed wild type and mutated versions of Bach1 together with or without its heterodimer partner MafK in human 293T and GM02063 cells and examined their subcellular localization. Inhibition of heme synthesis enhanced the nuclear accumulation of Bach1, whereas treating cells with hemin resulted in nuclear exclusion of Bach1. While the cadmium‐inducible nuclear export signal (NES) of Bach1 was dispensable for the heme response, a region containing two of the heme‐binding motifs was found to be critical for the heme‐induced nuclear exclusion. This region functioned as a heme‐regulated NES dependent on the exporter Crm1. These results extend the regulatory roles for heme in protein sorting, and suggest that Bach1 transduces metabolic activity into gene expression.


Biochemical and Biophysical Research Communications | 2004

Heme Positively Regulates the Expression of β-Globin at the Locus Control Region via the Transcriptional Factor Bach1 in Erythroid Cells

Tsuyoshi Tahara; Jiying Sun; Kazuhiko Igarashi; Shigeru Taketani

The transcriptional factor Bach1 forms a heterodimer with small Maf family, and functions as a repressor of the Maf recognition element (MARE) in vivo. To investigate the involvement of Bach1 in the heme-dependent regulation of the expression of the alpha-globin gene, human erythroleukemia K562 cells were cultured with succinylacetone (SA), a heme biosynthetic inhibitor, and the level of alpha-globin mRNA was examined. A decrease of alpha-globin mRNA was observed in SA-treated cells, which was restored by the addition of hemin. The heme-dependent expression of alpha-globin occurred at the transcriptional level since the expression of human alpha-globin gene promoter-reporter gene containing hypersensitive site-40 (HS-40) was decreased when K562 cells were cultured with SA. Hemin treatment restored the decrease of the promoter activity by SA. The regulation of the HS-40 activity by heme was dependent on the NF-E2/AP-1 (NA) site, which is similar to MARE. The NA site-binding activity of Bach1 in K562 increased upon SA-treatment, and the increase was diminished by the addition of hemin. The transient expression of Bach1 and mutated Bach1 lacking CP motifs suppressed the HS-40 activity, and cancellation of the repressor activity by hemin was observed when wild-type Bach1 was expressed. The expression of NF-E2 strengthened the restoration of the Bach1-effect by hemin. Interestingly, nuclear localization of Bach1 increased when cells were treated with SA, while hemin induced the nuclear export of Bach1. These results indicated that heme plays an important role in the induction of alpha-globin gene expression through disrupting the interaction of Bach1 and the NA site in HS-40 enhancer in erythroid cells.


Journal of Cell Science | 2013

Activation of the SUMO modification system is required for the accumulation of RAD51 at sites of DNA damage

Hiroki Shima; Hidekazu Suzuki; Jiying Sun; Kazuteru Kono; Lin Shi; Aiko Kinomura; Yasunori Horikoshi; Tsuyoshi Ikura; Masae Ikura; Roland Kanaar; Kazuhiko Igarashi; Hisato Saitoh; Hitoshi Kurumizaka; Satoshi Tashiro

Summary Genetic information encoded in chromosomal DNA is challenged by intrinsic and exogenous sources of DNA damage. DNA double-strand breaks (DSBs) are extremely dangerous DNA lesions. RAD51 plays a central role in homologous DSB repair, by facilitating the recombination of damaged DNA with intact DNA in eukaryotes. RAD51 accumulates at sites containing DNA damage to form nuclear foci. However, the mechanism of RAD51 accumulation at sites of DNA damage is still unclear. Post-translational modifications of proteins, such as phosphorylation, acetylation and ubiquitylation play a role in the regulation of protein localization and dynamics. Recently, the covalent binding of small ubiquitin-like modifier (SUMO) proteins to target proteins, termed SUMOylation, at sites containing DNA damage has been shown to play a role in the regulation of the DNA-damage response. Here, we show that the SUMOylation E2 ligase UBC9, and E3 ligases PIAS1 and PIAS4, are required for RAD51 accretion at sites containing DNA damage in human cells. Moreover, we identified a SUMO-interacting motif (SIM) in RAD51, which is necessary for accumulation of RAD51 at sites of DNA damage. These findings suggest that the SUMO–SIM system plays an important role in DNA repair, through the regulation of RAD51 dynamics.


Radiation Research | 2012

A Modified System for Analyzing Ionizing Radiation-Induced Chromosome Abnormalities

Lin Shi; Kurumi Fujioka; Jiying Sun; Aiko Kinomura; Toshiya Inaba; Tsuyoshi Ikura; Megu Ohtaki; Mitsuaki Yoshida; Yoshiaki Kodama; Gordon K. Livingston; Kenji Kamiya; Satoshi Tashiro

The analysis of dicentric chromosomes in human peripheral blood lymphocytes (PBLs) by Giemsa staining is the most established method for biological dosimetry. However, this method requires a well-trained person because of the difficulty in detecting aberrations rapidly and accurately. Here, we applied a fluorescence in situ hybridization (FISH) technique, using telomere and centromere peptide nucleic acid (PNA) probes, to solve the problem of biological dosimetry in radiation emergency medicine. A comparison by a well-trained observer found that FISH analysis of PBLs for the dose estimation was more accurate than the conventional Giemsa analysis, especially in samples irradiated at high doses. These results show that FISH analysis with centromeric/telomeric PNA probes could become the standard method for biological dosimetry in radiation emergency medicine.


International Journal of Radiation Oncology Biology Physics | 2012

Reorganization of Damaged Chromatin by the Exchange of Histone Variant H2A.Z-2

Ikuno Nishibuchi; Hidekazu Suzuki; Aiko Kinomura; Jiying Sun; Ning-Ang Liu; Yasunori Horikoshi; Hiroki Shima; Masayuki Kusakabe; Masahiko Harata; Tatsuo Fukagawa; Tsuyoshi Ikura; Takafumi Ishida; Yasushi Nagata; Satoshi Tashiro

PURPOSE The reorganization of damaged chromatin plays an important role in the regulation of the DNA damage response. A recent study revealed the presence of 2 vertebrate H2A.Z isoforms, H2A.Z-1 and H2A.Z-2. However, the roles of the vertebrate H2A.Z isoforms are still unclear. Thus, in this study we examined the roles of the vertebrate H2A.Z isoforms in chromatin reorganization after the induction of DNA double-strand breaks (DSBs). METHODS AND MATERIALS To examine the dynamics of H2A.Z isoforms at damaged sites, we constructed GM0637 cells stably expressing each of the green fluorescent protein (GFP)-labeled H2A.Z isoforms, and performed fluorescence recovery after photobleaching (FRAP) analysis and inverted FRAP analysis in combination with microirradiation. Immunofluorescence staining using an anti-RAD51 antibody was performed to study the kinetics of RAD51 foci formation after 2-Gy irradiation of wild-type (WT), H2A.Z-1- and H2A.Z-2-deficient DT40 cells. Colony-forming assays were also performed to compare the survival rates of WT, H2A.Z-1-, and H2A.Z-2-deficient DT40 cells with control, and H2A.Z-1- and H2A.Z-2-depleted U2OS cells after irradiation. RESULTS FRAP analysis revealed that H2A.Z-2 was incorporated into damaged chromatin just after the induction of DSBs, whereas H2A.Z-1 remained essentially unchanged. Inverted FRAP analysis showed that H2A.Z-2 was released from damaged chromatin. These findings indicated that H2A.Z-2 was exchanged at DSB sites immediately after the induction of DSBs. RAD51 focus formation after ionizing irradiation was disturbed in H2A.Z-2-deficient DT40 cells but not in H2A.Z-1-deficient cells. The survival rate of H2A.Z-2-deficient cells after irradiation was lower than those of WT and H2A.Z-1- DT40 cells. Similar to DT40 cells, H2A.Z-2-depleted U2OS cells were also radiation-sensitive compared to control and H2A.Z-1-depleted cells. CONCLUSIONS We found that vertebrate H2A.Z-2 is involved in the regulation of the DNA damage response at a very early stage, via the damaged chromatin reorganization required for RAD51 focus formation.


Scientific Reports | 2015

Nap1 stimulates homologous recombination by RAD51 and RAD54 in higher-ordered chromatin containing histone H1

Shinichi Machida; Motoki Takaku; Masae Ikura; Jiying Sun; Hidekazu Suzuki; Wataru Kobayashi; Aiko Kinomura; Akihisa Osakabe; Hiroaki Tachiwana; Yasunori Horikoshi; Atsuhiko Fukuto; Ryo Matsuda; Kiyoe Ura; Satoshi Tashiro; Tsuyoshi Ikura; Hitoshi Kurumizaka

Homologous recombination plays essential roles in mitotic DNA double strand break (DSB) repair and meiotic genetic recombination. In eukaryotes, RAD51 promotes the central homologous-pairing step during homologous recombination, but is not sufficient to overcome the reaction barrier imposed by nucleosomes. RAD54, a member of the ATP-dependent nucleosome remodeling factor family, is required to promote the RAD51-mediated homologous pairing in nucleosomal DNA. In higher eukaryotes, most nucleosomes form higher-ordered chromatin containing the linker histone H1. However, the mechanism by which RAD51/RAD54-mediated homologous pairing occurs in higher-ordered chromatin has not been elucidated. In this study, we found that a histone chaperone, Nap1, accumulates on DSB sites in human cells, and DSB repair is substantially decreased in Nap1-knockdown cells. We determined that Nap1 binds to RAD54, enhances the RAD54-mediated nucleosome remodeling by evicting histone H1, and eventually stimulates the RAD51-mediated homologous pairing in higher-ordered chromatin containing histone H1.


EMBO Reports | 2011

Synaptonemal complex protein SYCP3 impairs mitotic recombination by interfering with BRCA2

Noriko Hosoya; Miyuki Okajima; Aiko Kinomura; Yoshihiro Fujii; Takashi Hiyama; Jiying Sun; Satoshi Tashiro; Kiyoshi Miyagawa

The meiosis‐specific synaptonemal complex protein SYCP3 has been reported to be aberrantly expressed in tumours. However, in contrast to its well‐defined function in meiosis, its possible role in mitotic cells is entirely unknown. Here, we show that SYCP3 is expressed in a range of primary tumours and that it impairs chromosomal integrity in mitotic cells. Expression of SYCP3 inhibits the homologous recombination (HR) pathway mediated by RAD51, inducing hypersensitivity to DNA‐damaging agents such as a poly(ADP‐ribose) polymerase (PARP) inhibitor and chromosomal instability. SYCP3 forms a complex with BRCA2 and inhibits its role in HR. These findings highlight a new mechanism for chromosomal instability in cancer and extend the range of PARP‐inhibitor sensitive tumours to those expressing SYCP3.


Neuroscience Letters | 2008

Regulation of heme oxygenase-1 by transcription factor Bach1 in the mouse brain

Eiichirou Sakoda; Kazuhiko Igarashi; Jiying Sun; Kaoru Kurisu; Satoshi Tashiro

Oxidative stress has been implicated in tissue damage from traumatic brain injury. Heme oxygenase-1 (HO-1) is an inducible enzyme that degrades prooxidant heme to radical-scavenging biliverdin/bilirubin in order to protect cells from oxidative stress. Although HO-1 is induced after induction of brain damage, the regulatory mechanism of HO-1 in the brain is still unclear. Bach1 is a transcriptional repressor of the HO-1 gene, and plays a critical role in tissue protection from oxidative stress by reperfusion injury of the myocardium. In this study, we examined the role of Bach1 in HO-1 regulation of the various brain sites by investigating the expression of Bach1 and HO-1 in brain tissues of mice bearing Bach1-deficient (Bach1(-/-)) or wild-type (Bach1(+/+)) genes. While the expression levels of Bach1 mRNA in the olfactory bulb were significantly higher than other brain areas, those at the cortex showed the lowest activity. Bach1(-/-) mice showed significantly higher HO-1 mRNA expression levels than Bach1(+/+) mice in all brain sites studied. Moreover, higher induction of HO-1 was observed around damaged tissues after cold injury in Bach1(-/-) than Bach1(+/+) mice. Thus, Bach1 plays an important role in regulating the constitutive and inducible expression levels of HO-1 in the brain. Although a significantly higher level of HO-1 was observed in Bach1(-/-) than Bach1(+/+) mice, genetic ablation of the Bach1 gene failed to show any tissue protective effect after cold injury was inflicted on the cortex.


Oxidative Medicine and Cellular Longevity | 2014

Bach1 Deficiency and Accompanying Overexpression of Heme Oxygenase-1 Do Not Influence Aging or Tumorigenesis in Mice

Kazushige Ota; Andrey Brydun; Ari Itoh-Nakadai; Jiying Sun; Kazuhiko Igarashi

Oxidative stress contributes to both aging and tumorigenesis. The transcription factor Bach1, a regulator of oxidative stress response, augments oxidative stress by repressing the expression of heme oxygenase-1 (HO-1) gene (Hmox1) and suppresses oxidative stress-induced cellular senescence by restricting the p53 transcriptional activity. Here we investigated the lifelong effects of Bach1 deficiency on mice. Bach1-deficient mice showed longevity similar to wild-type mice. Although HO-1 was upregulated in the cells of Bach1-deficient animals, the levels of ROS in Bach1-deficient HSCs were comparable to those in wild-type cells. Bach1 −/−; p53 −/− mice succumbed to spontaneous cancers as frequently as p53-deficient mice. Bach1 deficiency significantly altered transcriptome in the liver of the young mice, which surprisingly became similar to that of wild-type mice during the course of aging. The transcriptome adaptation to Bach1 deficiency may reflect how oxidative stress response is tuned upon genetic and environmental perturbations. We concluded that Bach1 deficiency and accompanying overexpression of HO-1 did not influence aging or p53 deficiency-driven tumorigenesis. Our results suggest that it is useful to target Bach1 for acute injury responses without inducing any apparent deteriorative effect.


Genes, Chromosomes and Cancer | 2007

Nuclear positioning of the BACH2 gene in BCR-ABL positive leukemic cells

Atsushi Ono; Kazuteru Kono; Dai Ikebe; Akihiko Muto; Jiying Sun; Masao Kobayashi; Kazuhiro Ueda; Junia V. Melo; Kazuhiko Igarashi; Satoshi Tashiro

BACH2 is a B‐cell‐specific transcription repressor and is also know as a tumor suppressor in B cell malignancy. Expression of BACH2 is induced in BCR‐ABL positive lymphoid cell lines including BV173 by imatinib, a molecular targeting agent for the treatment of chronic myeloid leukemia (CML). Here we show that the activity of the BACH2 gene is related to the nuclear positioning of the gene loci. We examined the spatial association of the BACH2 gene with the centromeric heterochromatin, a transcriptionally repressive subnuclear compartment, by comparing cells with low (BV173 and K562) and high (NAMALWA) levels of BACH2 mRNA. The BACH2 gene was located closer to the centromeric heterochromatin in BV173 and K562 cells as compared to NAMALWA cells. In BV173 cells, the BACH2‐centromere distance increased after imatinib treatment to levels similar to those in NAMALWA cells. We also found that diethylmaleate, an oxidative stressor, enhanced the antiproliferative effect of imatinib in only BV173 cells. Since BACH2 induces apoptosis by oxidative stress, these observations suggest that down‐regulation of the BACH2 gene through the interaction with centromeric heterochromatin would take part in leukomogenesis of BCR‐ABL positive lymphoid leukemia.

Collaboration


Dive into the Jiying Sun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge