Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jlenia Brunetti is active.

Publication


Featured researches published by Jlenia Brunetti.


The FASEB Journal | 2010

A novel tetrabranched antimicrobial peptide that neutralizes bacterial lipopolysaccharide and prevents septic shock in vivo

Alessandro Pini; Chiara Falciani; Elisabetta Mantengoli; Stefano Bindi; Jlenia Brunetti; Sara Iozzi; Gian Maria Rossolini; Luisa Bracci

We describe the nonnatural antimicrobial peptide KKIRVRLSA (M33) and its capacity to neutralize LPS‐induced cytokine release, preventing septic shock in animals infected with bacterial species of clinical interest. M33 showed strong resistance to proteolytic degradation when synthesized in tetrabranched form with 4 peptides linked by a lysine core, making it suitable for use in vivo. HPLC and mass spectrometry demonstrated its stability in serum beyond 24 h. M33 was found to be very selective for gram‐negative bacteria. Minimal inhibitory concentration (MIC) ranged from 0.3 to 3 µΜ for multidrug resistant clinical isolates of several pathogenic species, including Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. M33 neutralized LPS derived from P. aeruginosa and K. pneumoniae, and prevented TNF‐α release from LPS‐activated macrophages, with an EC50 of 3.8e‐8 M and 2.8e‐7 M, respectively, as detected by sandwich ELISA. M33 activity was also tested in sepsis animal models. It averted septic shock symptoms due to Escherichia coli and P. aeruginosa in doses compatible with clinical use (5–25 mg/kg). These properties make tetrabranched M33 peptide a good candidate for the development of a new antibacterial drug.—Pini, A., Falciani, C., Mantengoli, E., Bindi, S., Brunetti, J., Iozzi, S., Rossolini, G. M., Bracci, L. A novel tetrabranched antimicrobial peptide that neutralizes bacterial lipopolysaccharide and prevents septic shock in vivo. FASEB J. 24, 1015–1022 (2010). www.fasebj.org


Molecular Cancer Therapeutics | 2007

Synthesis and biological activity of stable branched neurotensin peptides for tumor targeting

Chiara Falciani; Monica Fabbrini; Alessandro Pini; Luisa Lozzi; Barbara Lelli; Silvia Pileri; Jlenia Brunetti; Stefano Bindi; Silvia Scali; Luisa Bracci

Receptors for endogenous regulatory peptides, like the neuropeptide neurotensin, are overexpressed in several human cancers and can be targets for peptide-mediated tumor-selective therapy. Peptides, however, have the main drawback of an extremely short half-life in vivo. We showed that neurotensin and other endogenous peptides, when synthesized as dendrimers, retain biological activity and become resistant to proteolysis. Here, we synthesized the neurotensin functional fragment NT(8-13) in a tetrabranched form linked to different units for tumor therapy or diagnosis. Fluorescent molecules were used to monitor receptor binding and internalization in HT29 human adenocarcinoma cells and receptor binding in HT29 tumor xenografts in nude mice. Linking of chemotherapic molecules like chlorin e6 and methotrexate to dendrimers resulted in a dramatic increase in drug selectivity, uptake of which by target cells became dependent on peptide receptor binding. When nude mice carrying human tumor xenografts were treated with branched NT(8-13)-methotrexate, a 60% reduction in tumor growth was observed with respect to mice treated with the free drug. [Mol Cancer Ther 2007;6(9):2441–8]


ChemMedChem | 2011

Target-Selective Drug Delivery through Liposomes Labeled with Oligobranched Neurotensin Peptides

Chiara Falciani; Antonella Accardo; Jlenia Brunetti; Diego Tesauro; Barbara Lelli; Alessandro Pini; Luisa Bracci; Giancarlo Morelli

The structure and the in vitro behavior of liposomes filled with the cytotoxic drug doxorubicin (Doxo) and functionalized on the external surface with a branched moiety containing four copies of the 8–13 neurotensin (NT) peptide is reported. The new functionalized liposomes, DOPC‐NT4Lys(C18)2, are obtained by co‐aggregation of the DOPC phospholipid with a new synthetic amphiphilic molecule, NT4Lys(C18)2, which contains a lysine scaffold derivatized with a lipophilic moiety and a tetrabranched hydrophilic peptide, NT8–13, a neurotensin peptide fragment well known for its ability to mimic the neurotensin peptide in receptor binding ability. Dynamic light scattering measurements indicate a value for the hydrodynamic radius (RH) of 88.3±4.4 nm. The selective internalization and cytotoxicity of DOPC‐NT4Lys(C18)2 liposomes containing Doxo, as compared to pure DOPC liposomes, were tested in HT29 human colon adenocarcinoma and TE671 human rhabdomyosarcoma cells, both of which express neurotensin receptors. Peptide‐functionalized liposomes show a clear advantage in comparison to pure DOPC liposomes with regard to drug internalization in both HT29 and TE671 tumor cells: FACS analysis indicates an increase in fluorescence signal of the NT4‐liposomes, compared to the DOPC pure analogues, in both cell lines; cytotoxicity of DOPC‐NT4Lys(C18)2‐Doxo liposomes is increased four‐fold with respect to DOPC‐Doxo liposomes in both HT29 and TE671 cell lines. These effects could to be ascribed to the higher rate of internalization for DOPC‐NT4Lys(C18)2‐Doxo liposomes, due to stronger binding driven by a lower dissociation constant of the NT4‐liposomes that bind the membrane onto a specific protein, in contrast to DOPC liposomes, which approach the plasma membrane unselectively.


PLOS ONE | 2012

Isomerization of an Antimicrobial Peptide Broadens Antimicrobial Spectrum to Gram-Positive Bacterial Pathogens

Chiara Falciani; Luisa Lozzi; Simona Pollini; Vincenzo Luca; Veronica Carnicelli; Jlenia Brunetti; Barbara Lelli; Stefano Bindi; Silvia Scali; Antonio Di Giulio; Gian Maria Rossolini; Maria Luisa Mangoni; Luisa Bracci; Alessandro Pini

The branched M33 antimicrobial peptide was previously shown to be very active against Gram-negative bacterial pathogens, including multidrug-resistant strains. In an attempt to produce back-up molecules, we synthesized an M33 peptide isomer consisting of D-aminoacids (M33-D). This isomeric version showed 4 to 16-fold higher activity against Gram-positive pathogens, including Staphylococcus aureus and Staphylococcus epidermidis, than the original peptide, while retaining strong activity against Gram-negative bacteria. The antimicrobial activity of both peptides was influenced by their differential sensitivity to bacterial proteases. The better activity shown by M33-D against S. aureus compared to M33-L was confirmed in biofilm eradication experiments where M33-L showed 12% activity with respect to M33-D, and in vivo models where Balb-c mice infected with S. aureus showed 100% and 0% survival when treated with M33-D and M33-L, respectively. M33-D appears to be an interesting candidate for the development of novel broad-spectrum antimicrobials active against bacterial pathogens of clinical importance.


Biochemical Journal | 2006

Stable peptide inhibitors prevent binding of lethal and oedema factors to protective antigen and neutralize anthrax toxin in vivo

Alessandro Pini; Ylenia Runci; Chiara Falciani; Barbara Lelli; Jlenia Brunetti; Silvia Pileri; Monica Fabbrini; Luisa Lozzi; Claudia Ricci; Andrea Bernini; Fiorella Tonello; Federica Dal Molin; Paolo Neri; Neri Niccolai; Luisa Bracci

The lethal and oedema toxins produced by Bacillus anthracis, the aetiological agent of anthrax, are made by association of protective antigen with lethal and oedema factors and play a major role in the pathogenesis of anthrax. In the present paper, we describe the production of peptide-based specific inhibitors in branched form which inhibit the interaction of protective antigen with lethal and oedema factors and neutralize anthrax toxins in vitro and in vivo. Anti-protective antigen peptides were selected from a phage library by competitive panning with lethal factor. Selected 12-mer peptides were synthesized in tetra-branched form and were systematically modified to obtain peptides with higher affinity and inhibitory efficiency.


ChemMedChem | 2010

Design and in vitro evaluation of branched peptide conjugates:turning nonspecific cytotoxic drugs into tumor-selective agents.

Chiara Falciani; Jlenia Brunetti; Chiara Pagliuca; Stefano Menichetti; Lucia Vitellozzi; Barbara Lelli; Alessandro Pini; Luisa Bracci

The use of peptide receptors as targets for tumor‐selective therapies was envisaged years ago with the findings that receptors for different endogenous regulatory peptides are overexpressed in several primary and metastatic human tumors, and can be used as tumor antigens. Branched peptides can retain or even increase, through multivalent binding, the biological activity of a peptide and are very resistant to proteolysis, thus having a markedly higher in vivo activity compared with the corresponding monomeric peptides. Oligo‐branched peptides, containing the human regulatory peptide neurotensin (NT) sequence, have been used as tumor‐specific targeting agents. These peptides are able to selectively and specifically deliver effector units, for cell imaging or killing, to tumor cells that overexpress NT receptors. Results obtained with branched NT conjugated to different functional units for tumor imaging and therapy indicate that branched peptides are promising novel multifunctional targeting molecules. This study is focused on the role of the releasing pattern of drug‐conjugated branched NT peptides. We present results obtained with oligo‐branched neurotensin peptides conjugated to 6‐mercaptopurin (6‐MP), combretastain A‐4 (CA4) and monastrol (MON). Drugs were conjugated to oligo‐branched neurotensin through different linkers, and the mode‐of‐release, together with cytotoxicity, was studied in different human cancer cell lines. The results show that branched peptides are very promising pharmacodelivery options. Among our drug‐armed branched peptides, NT4–CA4 was identified as a candidate for further development and evaluation in preclinical pharmacokinetic and pharmacodynamic studies. This peptide–drug exhibits significant activity against pancreas and prostate human cancer cells. Consequently, this derivative is of considerable interest due to the high mortality rates of pancreas neuroendocrine tumors and the high incidence of prostate cancer.


Current Cancer Drug Targets | 2010

Modular branched neurotensin peptides for tumor target tracing and receptor-mediated therapy: a proof-of-concept.

Chiara Falciani; Barbara Lelli; Jlenia Brunetti; Silvia Pileri; Alessandra Cappelli; Alessandro Pini; Chiara Pagliuca; Niccolò Ravenni; Lapo Bencini; Stefano Menichetti; Renato Moretti; M De Prizio; Marco Scatizzi; Luisa Bracci

The aim of this study was to demonstrate that oligo-branched peptides can be effective either for spotlighting tumor cells that overexpress peptide receptors, or for killing them, simply by exchanging the functional moiety coupled to the conserved receptor-targeting core. Tetra-branched peptides containing neurotensin (NT) sequence are described here as selective targeting agents for human colon, pancreas and prostate cancer. Fluorophore-conjugated peptides were used to measure tumor versus healthy tissue binding in human surgical samples, resulting in validation of neurotensin receptors as highly promising tumor-biomarkers. Drug-armed branched peptides were synthesized with different conjugation methods, resulting in uncleavable adducts or drug-releasing molecules. Cytotoxicity on human cell lines from colon (HT-29), pancreas (PANC-1) or prostate (PC-3) carcinoma indicated branched NT conjugated with MTX and 5-FdU as the most active agents on PANC-1 (EC(50) 4.4e-007 M) and HT-29 (1.1e-007 M), respectively. Tetra-branched NT armed with 5-FdU was used for in vivo experiments in HT-29-xenografted mice and produced a 50% reduction in tumor growth with respect to animals treated with the free drug. An unrelated branched peptide carrying the same drug was completely ineffective. In vitro and in vivo results indicated that branched peptides are valuable tools for tumor selective targeting.


Journal of Medicinal Chemistry | 2013

Cancer selectivity of tetrabranched neurotensin peptides is generated by simultaneous binding to sulfated glycosaminoglycans and protein receptors.

Chiara Falciani; Jlenia Brunetti; Barbara Lelli; Niccolò Ravenni; Luisa Lozzi; Lorenzo Depau; Silvia Scali; Andrea Bernini; Alessandro Pini; Luisa Bracci

In previous papers we demonstrated that tetrabranched peptides containing the sequence of human neurotensin, NT4, are much more selective than native monomeric analogues for binding to different human cancer cells and tissues. We show here that the much higher binding of NT4 peptides, with respect to native neurotensin, to either cancer cell lines or human cancer surgical samples is generated by a switch in selectivity toward additional membrane receptors, which are specifically expressed by different human cancers. We demonstrate that the branched structure provides NT4 with ability to bind heparin and receptors belonging to the low density lipoprotein receptor (LDLR) family, known to be involved in cancer biology. Systematic modification of neurotensin sequence in NT4 peptides led to identification of a multimeric positively charged motif, which mediates interaction with both heparin and endocytic receptors. Our findings provide the molecular basis for construction of cancer theranostics with high cancer selectivity.


Journal of Peptide Science | 2013

Nanoparticles exposing neurotensin tumor-specific drivers†

Chiara Falciani; Jlenia Brunetti; Barbara Lelli; Antonella Accardo; Diego Tesauro; Giancarlo Morelli; Luisa Bracci

Nanoparticles have attracted much attention for their potential application as in vivo carriers of drugs. Labeling of nanoparticles with bioactive markers that are able to direct them toward specific biological target receptors has led to a new generation of drug delivery systems. In particular, low molecular weight peptides that remain stable in vivo could be promising tools to selectively drive nanoparticles loaded with active components to tumor cells.


Amino Acids | 2012

Efficacy and toxicity of the antimicrobial peptide M33 produced with different counter-ions

Alessandro Pini; Luisa Lozzi; Andrea Bernini; Jlenia Brunetti; Chiara Falciani; Silvia Scali; Stefano Bindi; Tiziana Di Maggio; Gian Maria Rossolini; Neri Niccolai; Luisa Bracci

The tetra-branched peptide M33 (Pini et al. in FASEB J 24:1015–1022, 2010) is under evaluation in animal models for its activity as antimicrobial agent in lung infections and sepsis. The preclinical development of a new drug requires medium-scale manufacture for tests of efficacy, biodistribution, pharmacokinetics and toxicity. In order to produce the most suitable peptide form for these purposes, we evaluated the behaviour of the peptide M33 obtained with different counter-ions. We compared activity and toxicity in vitro and in vivo of the peptide M33 produced as trifluoroacetate salt (TFacetate) and as acetate salt. The two forms did not differ substantially in terms of efficacy in vitro or in vivo but showed different toxicities for human cells and in animals. M33-TFacetate proved to be 5–30% more toxic than M33-acetate for cells derived from normal bronchi and cells carrying ΔF508 mutation in the CFTR gene, the most frequent variant in cystic fibrosis. M33-TFacetate produced manifest signs of in vivo toxicity immediately after administration, whereas M33-acetate only generated mild signs, which disappeared within a few hours. The peptide M33-acetate proved more suitable for the development of a new drug, and was therefore chosen for further characterization.

Collaboration


Dive into the Jlenia Brunetti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Pini

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge