Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jo Bovy is active.

Publication


Featured researches published by Jo Bovy.


Astronomy and Astrophysics | 2015

Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars

Timothée Delubac; Julian Bautista; Nicolás G. Busca; James Rich; D. Kirkby; S. Bailey; Andreu Font-Ribera; Anže Slosar; Khee-Gan Lee; Matthew M. Pieri; Jean-Christophe Hamilton; Eric Aubourg; Michael Blomqvist; Jo Bovy; J. Brinkmann; W. Carithers; Kyle S. Dawson; Daniel J. Eisenstein; Satya Gontcho A Gontcho; Jean-Paul Kneib; Jean-Marc Le Goff; Daniel Margala; Jordi Miralda-Escudé; Adam D. Myers; Robert C. Nichol; P. Noterdaeme; Ross O’Connell; Matthew D. Olmstead; Nathalie Palanque-Delabrouille; Isabelle Pâris

We report a detection of the baryon acoustic oscillation (BAO) feature in the flux-correlation function of the Ly forest of high-redshift quasars with a statistical significance of five standard deviations. The study uses 137,562 quasars in the redshift range 2:1 z 3:5 from the Data Release 11 (DR11) of the Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III. This sample contains three times the number of quasars used in previous studies. The measured position of the BAO peak determines the angular distance, DA(z = 2:34) and expansion rate, H(z = 2:34), both on a scale set by the sound horizon at the drag epoch, rd. We find DA=rd =


The Astrophysical Journal | 2013

A direct dynamical measurement of the Milky Way's disk surface density profile, disk scale length, and dark matter profile at 4 kpc ≲ R ≲ 9 kpc

Jo Bovy; Hans-Walter Rix

We present and apply rigorous dynamical modeling with which we infer unprecedented constraints on the stellar and dark matter mass distribution within our Milky Way (MW), based on large sets of phase-space data on individual stars. Specifically, we model the dynamics of 16,269 G-type dwarfs from SEGUE, which sample 5 < R_GC/kpc < 12 and 0.3 < |Z|/kpc < 3. We independently fit a parameterized MW potential and a three-integral, action-based distribution function (DF) to the phase-space data of 43 separate abundance-selected sub-populations (MAPs), accounting for the complex selection effects affecting the data. We robustly measure the total surface density within 1.1 kpc of the mid-plane to 5% over 4.5 < R_GC/kpc < 9. Using metal-poor MAPs with small radial scale lengths as dynamical tracers probes 4.5 < R_GC/kpc < 7, while MAPs with longer radial scale lengths sample 7 < R_GC/kpc < 9. We measure the mass-weighted Galactic disk scale length to be R_d = 2.15+/-0.14 kpc, in agreement with the photometrically inferred spatial distribution of stellar mass. We thereby measure dynamically the mass of the Galactic stellar disk to unprecedented accuracy: M_* = 4.6+/-0.3+3.0x(R_0/kpc-8)x10^{10}Msun and a total local surface density of \Sigma_{R_0}(Z=1.1 kpc) = 68+/-4 Msun/pc^2 of which 38+/-4 Msun/pc^2 is contributed by stars and stellar remnants. By combining our surface density measurements with the terminal velocity curve, we find that the MWs disk is maximal in that V_{c,disk} / V_{c,total} = 0.83+/-0.04 at R=2.2 R_d. We also constrain for the first time the radial profile of the dark halo at such small Galactocentric radii, finding that \rho_{DM} (r;near R_0) \propto 1 / r^\alpha with \alpha < 1.53 at 95% confidence. Our results show that action-based distribution-function modeling of complex stellar data sets is now a feasible approach that will be fruitful for interpreting Gaia data.


The Astrophysical Journal | 2012

The Milky Way's Circular-velocity Curve between 4 and 14 kpc from APOGEE data

Jo Bovy; Carlos Allende Prieto; Timothy C. Beers; Dmitry Bizyaev; Luiz Nicolaci da Costa; K. Cunha; Daniel J. Eisenstein; Peter M. Frinchaboy; Ana G. Pérez; Léo Girardi; Frederick R. Hearty; David W. Hogg; Jon A. Holtzman; Marcio A. G. Maia; Steven R. Majewski; Elena Malanushenko; Viktor Malanushenko; Szabolcs Mészáros; David L. Nidever; Robert W. O'Connell; Christine O'Donnell; Audrey Oravetz; Kaike Pan; Helio J. Rocha-Pinto; Ricardo P. Schiavon; Donald P. Schneider; Mathias Schultheis; Michael F. Skrutskie; Verne V. Smith; David H. Weinberg

We measure the Milky Ways rotation curve over the Galactocentric range 4 kpc R 14 kpc from the first year of data from the Apache Point Observatory Galactic Evolution Experiment. We model the line-of-sight velocities of 3365 stars in 14 fields with b = 0? between 30? ? l ? 210? out to distances of 10 kpc using an axisymmetric kinematical model that includes a correction for the asymmetric drift of the warm tracer population (? R 35 km s?1). We determine the local value of the circular velocity to be Vc (R 0) = 218 ? 6 km s?1 and find that the rotation curve is approximately flat with a local derivative between ?3.0 km s?1 kpc?1 and 0.4 km s?1 kpc?1. We also measure the Suns position and velocity in the Galactocentric rest frame, finding the distance to the Galactic center to be 8 kpc 99 % confidence. We find an offset between the Suns rotational velocity and the local circular velocity of 26 ? 3 km s?1, which is larger than the locally measured solar motion of 12 km s?1. This larger offset reconciles our value for Vc with recent claims that Vc 240 km s?1. Combining our results with other data, we find that the Milky Ways dark-halo mass within the virial radius is ~8 ? 1011 M ?.


The Astrophysical Journal | 2012

THE MILKY WAY HAS NO DISTINCT THICK DISK

Jo Bovy; Hans-Walter Rix; David W. Hogg

Different stellar sub-populations of the Milky Ways stellar disk are known to have different vertical scale heights, their thickness increasing with age. Using SEGUE spectroscopic survey data, we have recently shown that mono-abundance sub-populations, defined in the [α/Fe]-[Fe/H] space, are well described by single-exponential spatial-density profiles in both the radial and the vertical direction; therefore, any star of a given abundance is clearly associated with a sub-population of scale height hz . Here, we work out how to determine the stellar surface-mass density contributions at the solar radius R 0 of each such sub-population, accounting for the survey selection function, and for the fraction of the stellar population mass that is reflected in the spectroscopic target stars given populations of different abundances and their presumed age distributions. Taken together, this enables us to derive , the surface-mass contributions of stellar populations with scale height hz . Surprisingly, we find no hint of a thin-thick disk bi-modality in this mass-weighted scale-height distribution, but a smoothly decreasing function, approximately , from hz 200 pc to hz 1 kpc. As hz is ultimately the structurally defining property of a thin or thick disk, this shows clearly that the Milky Way has a continuous and monotonic distribution of disk thicknesses: there is no thick disk sensibly characterized as a distinct component. We discuss how our result is consistent with evidence for seeming bi-modality in purely geometric disk decompositions or chemical abundances analyses. We constrain the total visible stellar surface-mass density at the solar radius to be pc–2.


Astronomy and Astrophysics | 2012

The Sloan Digital Sky Survey quasar catalog: ninth data release

I. Pĝris; Patrick Petitjean; Eric Aubourg; S. Bailey; Nicholas P. Ross; Adam D. Myers; Michael A. Strauss; Scott F. Anderson; E. Arnau; Julian E. Bautista; Dmitry Bizyaev; Adam S. Bolton; Jo Bovy; W. N. Brandt; Howard J. Brewington; J. R. Browstein; Nicolás G. Busca; Daniel M. Capellupo; W. Carithers; Rupert A. C. Croft; Kyle S. Dawson; Timothée Delubac; Daniel J. Eisenstein; P. Engelke; Xiaohui Fan; N. Filiz Ak; Hayley Finley; Andreu Font-Ribera; Jian Ge; Robert R. Gibson

We present the Data Release 9 Quasar (DR9Q) catalog from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III. The catalog includes all BOSS objects that were targeted as quasar candidates during the survey, are spectrocopically confirmed as quasars via visual inspection, have luminosities Mi[z = 2] 2.15 (61 931) is ~2.8 times larger than the number of z > 2.15 quasars previously known. Redshifts and FWHMs are provided for the strongest emission lines (C iv, C iii], Mg ii). The catalog identifies 7533 broad absorption line quasars and gives their characteristics. For each object the catalog presents five-band (u, g, r, i, z) CCD-based photometry with typical accuracy of 0.03 mag, and information on the morphology and selection method. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra cover the wavelength region 3600−10 500 A at a spectral resolution in the range 1300 < R < 2500; the spectra can be retrieved from the SDSS Catalog Archive Server. We also provide a supplemental list of an additional 949 quasars that have been identified, among galaxy targets of the BOSS or among quasar targets after DR9 was frozen.


The Astrophysical Journal | 2015

CHEMICAL CARTOGRAPHY WITH APOGEE: METALLICITY DISTRIBUTION FUNCTIONS AND THE CHEMICAL STRUCTURE OF THE MILKY WAY DISK

Michael R. Hayden; Jo Bovy; Jon A. Holtzman; David L. Nidever; Jonathan C. Bird; David H. Weinberg; Brett H. Andrews; Steven R. Majewski; Carlos Allende Prieto; Friedrich Anders; Timothy C. Beers; Dmitry Bizyaev; Cristina Chiappini; Katia Cunha; Peter M. Frinchaboy; D. A. García-Hernández; Ana G. Pérez; Léo Girardi; Paul Harding; Frederick R. Hearty; Jennifer A. Johnson; Szabolcs Mészáros; Ivan Minchev; Robert W. O’Connell; Kaike Pan; A. C. Robin; Ricardo P. Schiavon; Donald P. Schneider; Mathias Schultheis; Matthew Shetrone

Using a sample of 69,919 red giants from the SDSS-III/APOGEE Data Release 12, we measure the distribution of stars in the [/Fe] versus [Fe/H] plane and the metallicity distribution functions (MDFs) across an unprecedented volume of the Milky Way disk, with radius 3 < R < 15 kpc and height kpc. Stars in the inner disk (R < 5 kpc) lie along a single track in [/Fe] versus [Fe/H], starting with -enhanced, metal-poor stars and ending at [/Fe] ∼ 0 and [Fe/H] ∼ +0.4. At larger radii we find two distinct sequences in [/Fe] versus [Fe/H] space, with a roughly solar- sequence that spans a decade in metallicity and a high- sequence that merges with the low- sequence at super-solar [Fe/H]. The location of the high- sequence is nearly constant across the disk.


The Astrophysical Journal | 2012

ON THE LOCAL DARK MATTER DENSITY

Jo Bovy; Scott Tremaine

An analysis of the kinematics of 412 stars at 1-4 kpc from the Galactic midplane by Moni Bidin et?al. has claimed to derive a local density of dark matter that is an order of magnitude below standard expectations. We show that this result is incorrect and that it arises from the assumption that the mean azimuthal velocity of the stellar tracers is independent of Galactocentric radius at all heights. We substitute the assumption, supported by data, that the circular speed is independent of radius in the midplane. We demonstrate that the assumption of constant mean azimuthal velocity is implausible by showing that it requires the circular velocity to drop more steeply than allowed by any plausible mass model, with or without dark matter, at large heights above the midplane. Using the approximation that the circular-velocity curve is flat in the midplane, we find that the data imply a local dark matter density of 0.008 ? 0.003 M ? pc?3 = 0.3 ? 0.1 GeV cm?3, fully consistent with standard estimates of this quantity. This is the most robust direct measurement of the local dark matter density to date.


The Astronomical Journal | 2015

ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY

Jon A. Holtzman; Matthew Shetrone; Jennifer A. Johnson; Carlos Allende Prieto; Friedrich Anders; Brett H. Andrews; Timothy C. Beers; Dmitry Bizyaev; Michael R. Blanton; Jo Bovy; R. Carrera; S. Drew Chojnowski; Katia Cunha; Daniel J. Eisenstein; Diane Feuillet; Peter M. Frinchaboy; Jessica Galbraith-Frew; Ana G. Pérez; D. A. García-Hernández; Sten Hasselquist; Michael R. Hayden; Frederick R. Hearty; Inese I. Ivans; Steven R. Majewski; Sarah L. Martell; Szabolcs Mészáros; Demitri Muna; David L. Nidever; Duy Cuong Nguyen; Robert W. O’Connell

The SDSS-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey operated from 2011–2014 using the APOGEE spectrograph, which collects high-resolution (R ~ 22,500), near-IR (1.51–1.70 µm) spectra with a multiplexing (300 fiber-fed objects) capability. We describe the survey data products that are publicly available, which include catalogs with radial velocity, stellar parameters, and 15 elemental abundances for over 150,000 stars, as well as the more than 500,000 spectra from which these quantities are derived. Calibration relations for the stellar parameters (Teff , log g, [M/H], [a/M]) and abundances (C, N, O, Na, Mg, Al, Si, S, K, Ca, Ti, V, Mn, Fe, Ni) are presented and discussed. The internal scatter of the abundances within clusters indicates that abundance precision is generally between 0.05 and 0.09 dex across a broad temperature range; it is smaller for some elemental abundances within more limited ranges and at high signal-to-noise ratio. We assess the accuracy of the abundances using comparison of mean cluster metallicities with literature values, APOGEE observations of the solar spectrum and of Arcturus, comparison of individual star abundances with other measurements, and consideration of the locus of derived parameters and abundances of the entire sample, and find that it is challenging to determine the absolute abundance scale; external accuracy may be good to 0.1–0.2 dex. Uncertainties may be larger at cooler temperatures (Teff < 4000 K). Access to the public data release and data products is described, and some guidance for using the data products is provided.


Journal of Cosmology and Astroparticle Physics | 2013

Measurement of baryon acoustic oscillations in the Lyman-α forest fluctuations in BOSS data release 9

Anže Slosar; Vid Iršič; D. Kirkby; S. Bailey; Nicolás G. Busca; Timothée Delubac; James Rich; Eric Aubourg; Julian Bautista; Vaishali Bhardwaj; Michael Blomqvist; Adam S. Bolton; Jo Bovy; Joel R. Brownstein; Bill Carithers; Rupert A. C. Croft; Kyle S. Dawson; Andreu Font-Ribera; J.M. Le Goff; Shirley Ho; K. Honscheid; Khee-Gan Lee; Daniel Margala; Patrick McDonald; Bumbarija Medolin; Jordi Miralda-Escudé; Adam D. Myers; Robert C. Nichol; P. Noterdaeme; Nathalie Palanque-Delabrouille

We use the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) to detect and measure the position of the Baryonic Acoustic Oscillation (BAO) feature in the three-dimensional correlation function in the Lyman-α flux fluctuations at a redshift zeff = 2.4. The feature is clearly detected at significance between 3 and 5 sigma (depending on the broadband model and method of error covariance matrix estimation) and is consistent with predictions of the standard ΛCDM model. We assess the biases in our method, stability of the error covariance matrix and possible systematic effects. We fit the resulting correlation function with several models that decouple the broadband and acoustic scale information. For an isotropic dilation factor, we measure 100 × (αiso − 1) = −1.6+2.0 +4.3 +7.4−2.0 −4.1 −6.8 (stat.) ±1.0 (syst.) (multiple statistical errors denote 1,2 and 3 sigma confidence limits) with respect to the acoustic scale in the fiducial cosmological model (flat ΛCDM with Ωm = 0.27, h = 0.7). When fitting separately for the radial and transversal dilation factors we find marginalised constraints 100 × (α|| − 1) = −1.3+3.5 +7.6 +12.3−3.3 −6.7 −10.2 (stat.) ±2.0 (syst.) and 100 × (α⊥ − 1) = −2.2+7.4 +17−7.1 −15 (stat.) ±3.0 (syst.). The dilation factor measurements are significantly correlated with cross-correlation coefficient of ~ −0.55. Errors become significantly non-Gaussian for deviations over 3 standard deviations from best fit value. Because of the data cuts and analysis method, these measurements give tighter constraints than a previous BAO analysis of the BOSS DR9 Lyman-α sample, providing an important consistency test of the standard cosmological model in a new redshift regime.


The Astrophysical Journal | 2009

Galactic masers and the Milky Way circular velocity

Jo Bovy; David W. Hogg; Hans-Walter Rix

Masers found in massive star-forming regions can be located precisely in six-dimensional phase space and therefore serve as a tool for studying Milky Way dynamics. The non-random orbital phases at which the masers are found and the sparseness of current samples require modeling. Here, we model the phase-space distribution function of 18 precisely measured Galactic masers, permitting a mean velocity offset and a general velocity dispersion tensor relative to their local standards of rest, and accounting for different pieces of prior information. With priors only on the Suns distance from the Galactic Center and on its motion with respect to the local standard of rest, the maser data provide a weak constraint on the circular velocity at the Sun of Vc = 246 ± 30 km s–1. Including prior information on the proper motion of Sgr A* leads to Vc = 244 ± 13 km s–1. We do not confirm the value of Vc 254 km s–1 found in more restrictive models. This analysis shows that there is no conflict between recent determinations of Vc from Galactic Center analyses, orbital fitting of the GD-1 stellar stream, and the kinematics of Galactic masers; a combined estimate is Vc = 236 ± 11 km s–1. Apart from the dynamical parameters, we find that masers tend to occur at post-apocenter, circular-velocity-lagging phases of their orbits.

Collaboration


Dive into the Jo Bovy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven R. Majewski

Association of Universities for Research in Astronomy

View shared research outputs
Top Co-Authors

Avatar

Jon A. Holtzman

New Mexico State University

View shared research outputs
Top Co-Authors

Avatar

Hans-Walter Rix

Steward Health Care System

View shared research outputs
Top Co-Authors

Avatar

Dmitry Bizyaev

Sternberg Astronomical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Shetrone

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Allende Prieto

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge