Jo Maertens
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jo Maertens.
BMC Biotechnology | 2007
Marjan De Mey; Jo Maertens; Gaspard Lequeux; Wim Soetaert; Erick Vandamme
BackgroundNowadays, the focus in metabolic engineering research is shifting from massive overexpression and inactivation of genes towards the model-based fine tuning of gene expression. In this context, the construction of a library of synthetic promoters of Escherichia coli as a useful tool for fine tuning gene expression is discussed here.ResultsA degenerated oligonucleotide sequence that encodes consensus sequences for E. coli promoters separated by spacers of random sequences has been designed and synthesized. This 57 bp long sequence contains 24 conserved, 13 semi-conserved (W, R and D) and 20 random nucleotides. This mixture of DNA fragments was cloned into a promoter probing vector (pVIK165). The ligation mixtures were transformed into competent E. coli MA8 and the resulting clones were screened for GFP activity by measuring the relative fluorescence units; some clones produced high fluorescence intensity, others weak fluorescence intensity. The clones cover a range of promoter activities from 21.79 RFU/OD600 ml to 7606.83 RFU/OD600 ml. 57 promoters were sequenced and used for promoter analysis. The present results conclusively show that the postulates, which link promoter strength to anomalies in the -10 box and/or -35 box, and to the length of the spacer, are not generally valid. However, by applying Partial Least Squares regression, a model describing the promoter strength was built and validated.ConclusionFor Escherichia coli, the promoter strength can not been linked to anomalies in the -10 box and/or -35 box, and to the length of the spacer. Also a probabilistic approach to relate the promoter sequence to its strength has some drawbacks. However, by applying Partial Least Squares regression, a good correlation was found between promoter sequence and promoter strength. This PLS model can be a useful tool to rationally design a suitable promoter in order to fine tune gene expression.
Biotechnology Advances | 2015
Frederik De Bruyn; Jo Maertens; Joeri Beauprez; Wim Soetaert; Marjan De Mey
Glycosylation of small molecules like specialized (secondary) metabolites has a profound impact on their solubility, stability or bioactivity, making glycosides attractive compounds as food additives, therapeutics or nutraceuticals. The subsequently growing market demand has fuelled the development of various biotechnological processes, which can be divided in the in vitro (using enzymes) or in vivo (using whole cells) production of glycosides. In this context, uridine glycosyltransferases (UGTs) have emerged as promising catalysts for the regio- and stereoselective glycosylation of various small molecules, hereby using uridine diphosphate (UDP) sugars as activated glycosyldonors. This review gives an extensive overview of the recently developed in vivo production processes using UGTs and discusses the major routes towards UDP-sugar formation. Furthermore, the use of interconverting enzymes and glycorandomization is highlighted for the production of unusual or new-to-nature glycosides. Finally, the technological challenges and future trends in UDP-sugar based glycosylation are critically evaluated and summarized.
Biotechnology Progress | 2007
Marjan De Mey; Gaspard Lequeux; Joeri Beauprez; Jo Maertens; Wim Soetaert; Peter Vanrolleghem; Erick Vandamme
E. coli cells produce acetate as an extracellular coproduct of aerobic cultures. Acetate is undesirable because it retards growth and inhibits protein formation. Most process designs or genetic modifications to minimize acetate formation aim at balancing growth rate and oxygen consumption. In this research, three genetic approaches to reduce acetate formation were investigated: (1) direct reduction of the carbon flow to acetate (ackA‐pta, poxB knock‐out); (2) anticipation on the underlying metabolic and regulatory mechanisms that lead to acetate (constitutive ppc expression mutant); and (3) both (1) and (2). Initially, these mutants were compared to the wild‐type E. coli via batch cultures under aerobic conditions. Subsequently, these mutants were further characterized using metabolic flux analysis on continuous cultures. It is concluded that a combination of directly reducing the carbon flow to acetate and anticipating on the underlying metabolic and regulatory mechanism that lead to acetate, is the most promising approach to overcome acetate formation and improve recombinant protein production. These genetic modifications have no significant influence on the metabolism when growing the micro‐organisms under steady state at relatively low dilution rates (less than 0.4 h−1).
Metabolic Engineering | 2014
Pieter Coussement; Jo Maertens; Joeri Beauprez; Wouter Van Bellegem; Marjan De Mey
The rapid and efficient assembly of multi-step metabolic pathways for generating microbial strains with desirable phenotypes is a critical procedure for metabolic engineering, and remains a significant challenge in synthetic biology. Although several DNA assembly methods have been developed and applied for metabolic pathway engineering, many of them are limited by their suitability for combinatorial pathway assembly. The introduction of transcriptional (promoters), translational (ribosome binding site (RBS)) and enzyme (mutant genes) variability to modulate pathway expression levels is essential for generating balanced metabolic pathways and maximizing the productivity of a strain. We report a novel, highly reliable and rapid single strand assembly (SSA) method for pathway engineering. The method was successfully optimized and applied to create constructs containing promoter, RBS and/or mutant enzyme libraries. To demonstrate its efficiency and reliability, the method was applied to fine-tune multi-gene pathways. Two promoter libraries were simultaneously introduced in front of two target genes, enabling orthogonal expression as demonstrated by principal component analysis. This shows that SSA will increase our ability to tune multi-gene pathways at all control levels for the biotechnological production of complex metabolites, achievable through the combinatorial modulation of transcription, translation and enzyme activity.
Journal of Biotechnology | 2010
An Cerdobbel; Tom Desmet; Karel De Winter; Jo Maertens; Wim Soetaert
Sucrose phosphorylase from Bifidobacterium adolescentis was recombinantly expressed in Escherichia coli and purified by use of a His-tag. Kinetic characterization of the enzyme revealed an optimal temperature for phosphorolytic activity of 58°C, which is surprisingly high for an enzyme from a mesophilic source. The temperature optimum could be further increased to 65°C by multipoint covalent immobilization on Sepabeads EC-HFA. The optimal immobilization conditions were determined by surface response design. The highest immobilization yield (72%) was achieved in a phosphate buffer of 0.04 mM at pH 7.2, irrespective of the temperature. The immobilized enzyme was able to retain 65% of its activity after 16 h incubation at 60°C. Furthermore, immobilization of the enzyme in the presence of its substrate sucrose, increased this value to 75%. The obtained biocatalyst should, therefore, be useful for application in carbohydrate conversions at high temperatures, as required by the industry.
Biotechnology Progress | 2010
Jo Maertens; Peter Vanrolleghem
The state of the art tools for modeling metabolism, typically used in the domain of metabolic engineering, were reviewed. The tools considered are stoichiometric network analysis (elementary modes and extreme pathways), stoichiometric modeling (metabolic flux analysis, flux balance analysis, and carbon modeling), mechanistic and approximative modeling, cybernetic modeling, and multivariate statistics. In the context of metabolic engineering, one should be aware that the usefulness of these tools to optimize microbial metabolism for overproducing a target compound depends predominantly on the characteristic properties of that compound. Because of their shortcomings not all tools are suitable for every kind of optimization; issues like the dependence of the target compounds synthesis on severe (redox) constraints, the characteristics of its formation pathway, and the achievable/desired flux towards the target compound should play a role when choosing the optimization strategy.
Biotechnology Advances | 2015
Gert Peters; Pieter Coussement; Jo Maertens; Jeroen Lammertyn; Marjan De Mey
Synthetic biology, in close concert with systems biology, is revolutionizing the field of metabolic engineering by providing novel tools and technologies to rationally, in a standardized way, reroute metabolism with a view to optimally converting renewable resources into a broad range of bio-products, bio-materials and bio-energy. Increasingly, these novel synthetic biology tools are exploiting the extensive programmable nature of RNA, vis-à-vis DNA- and protein-based devices, to rationally design standardized, composable, and orthogonal parts, which can be scaled and tuned promptly and at will. This review gives an extensive overview of the recently developed parts and tools for i) modulating gene expression ii) building genetic circuits iii) detecting molecules, iv) reporting cellular processes and v) building RNA nanostructures. These parts and tools are becoming necessary armamentarium for contemporary metabolic engineering. Furthermore, the design criteria, technological challenges, and recent metabolic engineering success stories of the use of RNA devices are highlighted. Finally, the future trends in transforming metabolism through RNA engineering are critically evaluated and summarized.
New Biotechnology | 2013
Hendrik Waegeman; Stijn De Lausnay; Joeri Beauprez; Jo Maertens; Marjan De Mey; Wim Soetaert
Escherichia coli strains are widely used as host for the production of recombinant proteins. Compared to E. coli K12, E. coli BL21 (DE3) has several biotechnological advantages, such as a lower acetate yield and a higher biomass yield, which have a beneficial effect on protein production. In a previous study (BMC Microbiol. 2011, 11:70) we have altered the metabolic fluxes of a K12 strain (i.e. E. coli MG1655) by deleting the regulators ArcA and IclR in such a way that the biomass yield is remarkably increased, while the acetate production is decreased to a similar value as for BL21 (DE3). In this study we show that the increased biomass yield beneficially influences recombinant protein production as a higher GFP yield was observed for the double knockout strain compared to its wild type. However, at higher cell densities (>2 g L(-1) CDW), the GFP concentration decreases again, due to the activity of proteases which obstructs the application of the strain in high cell density cultivations. By further deleting the genes lon and ompT, which encode for proteases, this degradation could be reduced. Consequently, higher GFP yields were observed in the quadruple knockout strain as opposed to the double knockout strain and the MG1655 wild type and its yield approximates the GFP yield of E. coli BL21 (DE3), that is, 27±5 mg g(CDW)(-1) vs. 30±5 mg g(CDW)(-1), respectively.
Biotechnology and Bioengineering | 2015
Frederik De Bruyn; Brecht De Paepe; Jo Maertens; Joeri Beauprez; Pieter De Cocker; Stein Mincke; Christian V. Stevens; Marjan De Mey
Glycosylation of small molecules can significantly alter their properties such as solubility, stability, and/or bioactivity, making glycosides attractive and highly demanded compounds. Consequently, many biotechnological glycosylation approaches have been developed, with enzymatic synthesis and whole‐cell biocatalysis as the most prominent techniques. However, most processes still suffer from low yields, production rates and inefficient UDP‐sugar formation. To this end, a novel metabolic engineering strategy is presented for the in vivo glucosylation of small molecules in Escherichia coli W. This strategy focuses on the introduction of an alternative sucrose metabolism using sucrose phosphorylase for the direct and efficient generation of glucose 1‐phosphate as precursor for UDP‐glucose formation and fructose, which serves as a carbon source for growth. By targeted gene deletions, a split metabolism is created whereby glucose 1‐phosphate is rerouted from the glycolysis to product formation (i.e., glucosylation). Further, the production pathway was enhanced by increasing and preserving the intracellular UDP‐glucose pool. Expression of a versatile glucosyltransferase from Vitis vinifera (VvGT2) enabled the strain to efficiently produce 14 glucose esters of various hydroxycinnamates and hydroxybenzoates with conversion yields up to 100%. To our knowledge, this fast growing (and simultaneously producing) E. coli mutant is the first versatile host described for the glucosylation of phenolic acids in a fermentative way using only sucrose as a cheap and sustainable carbon source. Biotechnol. Bioeng. 2015;112: 1594–1603.
Journal of Industrial Microbiology & Biotechnology | 2017
Brecht De Paepe; Gert Peters; Pieter Coussement; Jo Maertens; Marjan De Mey
Monitoring cellular behavior and eventually properly adapting cellular processes is key to handle the enormous complexity of today’s metabolic engineering questions. Hence, transcriptional biosensors bear the potential to augment and accelerate current metabolic engineering strategies, catalyzing vital advances in industrial biotechnology. The development of such transcriptional biosensors typically starts with exploring nature’s richness. Hence, in a first part, the transcriptional biosensor architecture and the various modi operandi are briefly discussed, as well as experimental and computational methods and relevant ontologies to search for natural transcription factors and their corresponding binding sites. In the second part of this review, various engineering approaches are reviewed to tune the main characteristics of these (natural) transcriptional biosensors, i.e., the response curve and ligand specificity, in view of specific industrial biotechnology applications, which is illustrated using success stories of transcriptional biosensor engineering.