Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jo Suda is active.

Publication


Featured researches published by Jo Suda.


Hepatology | 2015

Receptor interacting protein kinase 1 mediates murine acetaminophen toxicity independent of the necrosome and not through necroptosis

Lily Dara; Heather S. Johnson; Jo Suda; Sanda Win; William A. Gaarde; Derick Han; Neil Kaplowitz

Although necrosis in the acetaminophen (APAP) model is known to be regulated by c‐Jun NH2‐terminal kinase (JNK) through interaction with mitochondria, the role of necroptosis through receptor‐interacting proteins 1 and 3 (RIPK1 and RIPK3) has also been suggested. Our aim was to determine the relationship between these two mechanisms of cell death. To verify the participation of RIPK1, we used antisense knockdown and confirmed protection comparable to the RIPK1 inhibitor, necrostatin, in vivo and in vitro. However, we found no evidence that RIPK3 is expressed in primary mouse hepatocytes under basal conditions or after APAP and RIPK3−/− mice were not protected. RIPK3 was exclusively expressed in nonparenchymal cells. RIPK1 knockdown protected RIPK3−/− mice to the same extent as wild‐type mice, underscoring the independent role of RIPK1. We confirmed that necroptosis is not involved in APAP toxicity by using mixed lineage kinase domain‐like protein (MLKL) knockout mice, which were not protected from APAP. Next, we addressed whether there is interplay between RIPK1 and JNK. RIPK1 knockdown decreased the level of JNK activation and translocation to mitochondria and abrogated subsequent translocation of dynamin‐related protein 1 (Drp1). Interestingly, APAP induced translocation of RIPK1 to mitochondria, which was unaffected by knockdown of the mitochondrial JNK docking protein, Sh3 homology 3 binding protein 5 (Sab). Conclusion: RIPK1 participates in APAP‐induced necrosis upstream of JNK activation whereas RIPK3 and MLKL are dispensable, indicating that necroptosis does not contribute to APAP‐induced necrosis and RIPK1 has a unique, independent role.(Hepatology 2015;62:1847–1857)


American Journal of Physiology-cell Physiology | 2011

Phosphorylation of radixin regulates cell polarity and Mrp-2 distribution in hepatocytes

Jo Suda; Lixin Zhu; Serhan Karvar

Radixin, the dominant ezrin-radixin-moesin (ERM) protein in hepatocytes, has two important binding domains: an NH(2)-terminal region that binds to plasma membrane and a COOH-terminal region that binds to F-actin after a conformational activation by phosphorylation at Thr564. The present studies were undertaken to investigate the cellular changes in expression of radixin in WIF-B cells and to assess radixin distribution and its influence on cell polarity. We used a recombinant adenoviral expression system encoding radixin wild-type and Thr564 mutants fused to cyan fluorescent protein (CFP), as well as conventional immunostaining procedures. Functional analyses were characterized quantitatively. Similar to endogenous radixin, adenovirus-infected radixin-CFP-wild type and nonphosphorylatable radixin-CFP-T564A were found to be expressed heavily in the compartment of canalicular membrane vacuoles, typically colocalizing with multidrug resistance-associated protein 2 (Mrp-2). Expression of radixin-CFP-T564D, which mimics constant phosphorylation, was quite different, being rarely associated with canalicular membranes. The WIF-B cells were devoid of a secretory response, T567D radixin became predominantly redistributed to the basolateral membrane, usually in the form of dense, long spikes and fingerlike projections, and the altered cell polarity involved changes in apical membrane markers. Differences in polar distribution of radixin suggest a role for the linker protein in promoting formation and plasticity of membrane surface projections and also suggest that radixin might be an organizer and regulator of Mrp-2 and cell polarity in hepatocytes.


Scientific Reports | 2016

Lysosomal Cholesterol Accumulation Sensitizes To Acetaminophen Hepatotoxicity by Impairing Mitophagy

Anna Baulies; Vicent Ribas; S. Núñez; Sandra Torres; Cristina Alarcón-Vila; Laura Martínez; Jo Suda; Maria D. Ybanez; Neil Kaplowitz; Carmen García-Ruiz; José C. Fernández-Checa

The role of lysosomes in acetaminophen (APAP) hepatotoxicity is poorly understood. Here, we investigated the impact of genetic and drug-induced lysosomal cholesterol (LC) accumulation in APAP hepatotoxicity. Acid sphingomyelinase (ASMase)−/− mice exhibit LC accumulation and higher mortality after APAP overdose compared to ASMase+/+ littermates. ASMase−/− hepatocytes display lower threshold for APAP-induced cell death and defective fusion of mitochondria-containing autophagosomes with lysosomes, which decreased mitochondrial quality control. LC accumulation in ASMase+/+ hepatocytes caused by U18666A reproduces the susceptibility of ASMase−/− hepatocytes to APAP and the impairment in the formation of mitochondria-containing autolysosomes. LC extraction by 25-hydroxycholesterol increased APAP-mediated mitophagy and protected ASMase−/− mice and hepatocytes against APAP hepatotoxicity, effects that were reversed by chloroquine to disrupt autophagy. The regulation of LC by U18666A or 25-hydroxycholesterol did not affect total cellular sphingomyelin content or its lysosomal distribution. Of relevance, amitriptyline-induced ASMase inhibition in human hepatocytes caused LC accumulation, impaired mitophagy and increased susceptibility to APAP. Similar results were observed upon glucocerebrosidase inhibition by conduritol β-epoxide, a cellular model of Gaucher disease. These findings indicate that LC accumulation determines susceptibility to APAP hepatotoxicity by modulating mitophagy, and imply that genetic or drug-mediated ASMase disruption sensitizes to APAP-induced liver injury.


Journal of Immunology | 2016

Knockdown of RIPK1 Markedly Exacerbates Murine Immune-Mediated Liver Injury through Massive Apoptosis of Hepatocytes, Independent of Necroptosis and Inhibition of NF-κB

Jo Suda; Lily Dara; Luoluo Yang; Mariam Aghajan; Yong Song; Neil Kaplowitz; Zhang-Xu Liu

Receptor-interacting protein kinase (RIPK)1 has an essential role in the signaling pathways triggered by death receptors through activation of NF-κB and regulation of caspase-dependent apoptosis and RIPK3/mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis. We examined the effect of RIPK1 antisense knockdown on immune-mediated liver injury in C57BL/6 mice caused by α-galactosylceramide (αGalCer), a specific activator for invariant NKT cells. We found that knockdown of RIPK1 markedly exacerbated αGalCer-mediated liver injury and induced lethality. This was associated with increased hepatic inflammation and massive apoptotic death of hepatocytes, as indicated by TUNEL staining and caspase-3 activation. Pretreatment with zVAD.fmk, a pan-caspase inhibitor, or neutralizing Abs against TNF, almost completely protected against the exacerbated liver injury and lethality. Primary hepatocytes isolated from RIPK1-knockdown mice were sensitized to TNF-induced cell death that was completely inhibited by adding zVAD.fmk. The exacerbated liver injury was not due to impaired hepatic NF-κB activation in terms of IκBα phosphorylation and degradation in in vivo and in vitro studies. Lack of RIPK1 kinase activity by pretreatment with necrostatin-1, a RIPK1 kinase inhibitor, or in the RIPK1 kinase-dead knock-in (RIPK1D138N) mice did not exacerbate αGalCer-mediated liver injury. Furthermore, RIPK3-knockout and MLKL-knockout mice behaved similarly as wild-type control mice in response to αGalCer, with or without knockdown of RIPK1, excluding a switch to RIPK3/MLKL-mediated necroptosis. Our findings reveal a critical kinase-independent platform role for RIPK1 in protecting against TNF/caspase-dependent apoptosis of hepatocytes in immune-mediated liver injury.


American Journal of Physiology-cell Physiology | 2014

Distribution dynamics and functional importance of NHERF1 in regulation of Mrp-2 trafficking in hepatocytes

Serhan Karvar; Jo Suda; Lixin Zhu; Don C. Rockey

Na(+)/H(+) exchanger regulatory factor 1 (NHERF1) is a multifunctional scaffolding protein that interacts with receptors and ion transporters in its PDZ domains and with the ezrin-radixin-moesin (ERM) family of proteins in its COOH terminus. The role of NHERF1 in hepatocyte function remains largely unknown. We examine the distribution and physiological significance of NHERF1 and multidrug resistance-associated protein 2 (Mrp-2) in hepatocytes. A WT radixin binding site mutant (F355R) and NHERF1 PDZ1 and PDZ2 domain adenoviral mutant constructs were tagged with yellow fluorescent protein and expressed in polarized hepatocytes to study localization and function of NHERF1. Cellular distribution of NHERF1 and radixin was visualized by fluorescence microscopy. A 5-chloromethylfluorescein diacetate (CMFDA) assay was used to characterize Mrp-2 function. Similar to Mrp-2, WT NHERF1 and the NHERF1 PDZ2 deletion mutant were localized to the canalicular membrane. In contrast, the radixin binding site mutant (F355R) and the NHERF1 PDZ1 deletion mutant, which interacts poorly with Mrp-2, were rarely associated with the canalicular membrane. Knockdown of NHERF1 led to dramatically impaired CMFDA secretory response. Use of CMFDA showed that the NHERF1 PDZ1 and F355R mutants were devoid of a secretory response, while WT NHERF1-infected cells exhibited increased secretion of glutathione-methylfluorescein. The data indicate that NHERF1 interacts with Mrp-2 via the PDZ1 domain of NHERF1 and, furthermore, that NHERF1 is essential for maintaining the localization and function of Mrp-2.


Gastroenterology | 2011

Rab27b Localizes to the Tubulovesicle Membranes of Gastric Parietal Cells and Regulates Acid Secretion

Jo Suda; Lixin Zhu; Curtis T. Okamoto; Serhan Karvar

BACKGROUND & AIMS Rabs are monomeric guanosine triphosphatases that regulate membrane trafficking and acid secretion in gastric parietal cells. Using a proteomics approach, we identified a new Rab, Rab27b, in tubulovesicle membranes and determined its role in parietal cell activation. METHODS We used mass spectrometry (MS) to identify Rab27b in purified tubulovesicular membrane fractions and used immunoblot and immunofluorescence analyses to study its expression. Wild-type, constitutively active (Rab27bQ78L), and dominant negative (Rab27bN133I) forms of Rab27b were tagged with yellow fluorescent protein (YFP) and expressed in parietal cells using adenoviral constructs to study localization and function. Localization was visualized by fluorescence microscopy in resting and stimulated cells. Acid secretion in primary cell cultures was measured by aminopyrine accumulation. RESULTS A tandem MS peptide mass fingerprint was matched to 7 peptides of Rab27b. Rab27b localized to tubulovesicle membranes, based on immunoblot and immunocytochemical analyses. Endogenous Rab27b, YFP/wild-type Rab27b, Rab27bQ78L, and Rab27bN133I all distributed throughout the cytoplasm of resting parietal cells. After stimulation, wild-type Rab27b and YFP-Rab27bQ78L translocated to the apical membrane, but YFPR-ab27bN133I did not. Expression of wild-type YFP-Rab27b or YFP-Rab27bQ78L did not affect acid secretion, whereas expression of Rab27bN133I almost completely inhibited acid secretion. CONCLUSIONS Rab27b is associated with tubulovesicle membranes in the parietal cell and Rab27b may play a role in stimulation-associated membrane recruitment and gastric acid secretion.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2015

Phosphorylation dynamics of radixin in hypoxia-induced hepatocyte injury.

Jo Suda; Don C. Rockey; Serhan Karvar

The most prominent ezrin-radixin-moesin protein in hepatocytes is radixin, which is localized primarily at the canalicular microvilli and appears to be important in regulation of cell polarity and in localizing the multidrug resistance-associated protein 2 (Mrp-2) function. Our aim was to investigate how hypoxia affects radixin distribution and Mrp-2 function. We created wild-type and mutant constructs (in adenoviral vectors), which were expressed in WIF-B cells. The cellular distribution of Mrp-2 and radixin was visualized by fluorescence microscopy, and a 5-chloromethylfluorescein diacetate (CMFDA) assay was used to measure Mrp-2 function. Under usual conditions, cells infected with wild-type radixin, nonphosphorylatable radixin-T564A, and radixin-T564D (active phospho-mimicking mutant) were found to be heavily expressed in canalicular membrane compartment vacuoles, typically colocalizing with Mrp-2. In contrast, after hypoxia for 24 h, both endogenous and overexpressed wild-type radixin and the radixin-T564A mutant were found to be translocated to the cytoplasmic space. However, distribution of the radixin-T564D mutant, which mimics constant phosphorylation, was remarkably different, being associated with canalicular membranes even in hypoxic conditions. This dominant-active construct also prevented dissociation of radixin from the plasma membrane. Hypoxia also led to Mrp-2 mislocalization and caused Mrp-2 to be dissociated from radixin; the radixin phospho-mimicking mutant (T564D) abrogated this effect of hypoxia. Finally, hypoxia diminished the secretory response (measured using the CMFDA assay) in WIF-B cells, and the dominant-active construct (radixin-T567D) rescued this phenotype. Taken collectively, these findings suggest that radixin regulates Mrp-2 localization and function in hepatocytes and is important in hypoxic liver injury.


Digestive Diseases and Sciences | 2016

Akt2-Dependent Phosphorylation of Radixin in Regulation of Mrp-2 Trafficking in WIF-B Cells

Jo Suda; Don C. Rockey; Serhan Karvar

BackgroundThe dominant ezrin/radixin/moesin protein in hepatocytes is radixin, which plays an important role in mediating the binding of F-actin to the plasma membrane after a conformational activation by phosphorylation at Thr564.AimHere we have investigated the importance of Akt-mediated radixin Thr564 phosphorylation on Mrp-2 distribution and function in WIF-B cells. Mrp-2 is an adenosine triphosphate (ATP)-binding cassette transporter that plays an important role in detoxification and chemoprotection by transporting a wide range of compounds, especially conjugates of lipophilic substances with glutathione, organic anions, and drug metabolites such as glucuronides.MethodsAkt1 and Akt2 expression were manipulated using dominant active and negative constructs as well as Akt1 and Akt2 siRNA. Cellular distribution of radixin and Mrp-2 was visualized by fluorescence microscopy. A 5-chloromethylfluorescein diacetate, which is a substrate of the Mrp-2 and is actively transported in canalicular lumina, was used to measure Mrp-2 function.ResultsRadixin phosphorylation was significantly increased in wild-type and dominant active Akt2 transfected cells. Furthermore, radixin and Mrp-2 were localized at the canalicular membrane, similar to control cells. In contrast, overexpression of dominant negative Akt2, siRNA knockdown of Akt2 and a specific Akt inhibitor prevented radixin phosphorylation and led to alteration of normal radixin and Mrp-2 localization; inhibition of Akt2, but not Akt1 function led to radixin localization to the cytoplasmic space. In addition, dominant negative and Akt2 knockdown led to a dramatically impaired hepatocyte secretory response, while wild-type and dominant active Akt2 transfected cells exhibited increased 5-chloromethylfluorescein diacetate excretion. In contrast to Akt2, Akt1 was not associated with radixin phosphorylation.ConclusionsThese studies, therefore, identify Akt2 as a critical kinase that regulates radixin phosphorylation and leads to Mrp-2 translocation and function.


Gastroenterology | 2014

Mo1807 Kupffer Cells (KC) Contribute to Early Development of Acetaminophen (APAP) Hepatotoxicity, but Their Role in the Late Phase of Liver Injury and Regeneration Is Replaced by Newly Recruited Inflammatory Monocytes/Macrophages

Luoluo Yang; Jo Suda; Xiangwei Meng; Neil Kaplowitz; Zhang-Xu Liu


Gastroenterology | 2010

833 Distribution Dynamics of Radixin and NHERF-1 on Regulation of mrp-2 Trafficking in Hepatocytes

Jo Suda; Lixin Zhu; Serhan Karvar

Collaboration


Dive into the Jo Suda's collaboration.

Top Co-Authors

Avatar

Serhan Karvar

University of California

View shared research outputs
Top Co-Authors

Avatar

Lixin Zhu

University at Buffalo

View shared research outputs
Top Co-Authors

Avatar

Neil Kaplowitz

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Don C. Rockey

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Lily Dara

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Zhang-Xu Liu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Curtis T. Okamoto

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Derick Han

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Heather S. Johnson

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge