Joachim F. Ernst
University of Düsseldorf
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joachim F. Ernst.
The EMBO Journal | 1997
Volker R. Stoldt; Anja Sonneborn; Christoph E. Leuker; Joachim F. Ernst
We identified a gene of the fungal pathogen Candida albicans, designated EFG1, whose high‐level expression stimulates pseudohyphal morphogenesis in the yeast Saccharomyces cerevisiae. In a central region the deduced Efg1 protein is highly homologous to the StuA and Phd1/Sok2 proteins that regulate morphogenesis of Aspergillus nidulans and S.cerevisiae, respectively. The core of the conserved region is homologous to the basic helix–loop–helix (bHLH) motif of eukaryotic transcription factors, specifically to the human Myc and Max proteins. Fungal‐specific residues in the bHLH domain include the substitution of an invariant glutamate, responsible for target (E‐box) specificity, by a threonine residue. During hyphal induction EFG1 transcript levels decline to low levels; downregulation is effected at the level of transcriptional initiation as shown by a EFG1 promoter–LAC4 fusion. A strain carrying one disrupted EFG1 allele and one EFG1 allele under the control of the glucose‐repressible PCK1 promoter forms rod‐like, pseudohyphal cells, but is unable to form true hyphae on glucose‐containing media. Overexpression of EFG1 in C.albicans leads to enhanced filamentous growth in the form of extended pseudohyphae in liquid and on solid media. The results suggest that Efg1p has a dual role as a transcriptional activator and repressor, whose balanced activity is essential for yeast, pseudohyphal and hyphal morphogenesis of C.albicans. Functional analogies between Efg1p and Myc are discussed.
Microbiology | 2000
Joachim F. Ernst
Awareness of Candida albicans as a major human health threat has risen during recent years. Although infections by C. albicans can be relatively mild and superficial, systemic mycoses often occur in immunocompromised patients, or even as a consequence of long-term therapy with broad-spectrum antibiotics or of chemotherapy (reviewed by Odds, 1988). Effective antifungal agents which are free of side-effects are urgently needed. There is hope that recently developed techniques of manipulating C. albicans and the sequencing of its genome will lead to a thorough understanding of the virulence and biology of this fungal pathogen, thus offering the possibility of a knowledge-based approach to novel antifungal agents.
Molecular Microbiology | 2000
Anja Sonneborn; Dirk P. Bockmühl; Michaela Gerads; Katharina Kurpanek; Dominique Sanglard; Joachim F. Ernst
External signals induce the switch from a yeast to a hyphal growth form in the fungal pathogen Candida albicans. We demonstrate here that the catalytic subunit of a protein kinase A (PKA) isoform encoded by TPK2 is required for internal signalling leading to hyphal differentiation. TPK2 complements the growth defect of a Saccharomyces cerevisiae tpk1‐3 mutant and Tpk2p is able to phosphorylate an established PKA‐acceptor peptide (kemptide). Deletion of TPK2 blocks morphogenesis and partially reduces virulence, whereas TPK2 overexpression induces hyphal formation and stimulates agar invasion. The defective tpk2 phenotype is suppressed by overproduction of known signalling components, including Efg1p and Cek1p, whereas TPK2 overexpression reconstitutes the cek1 but not the efg1 phenotype. The results indicate that PKA activity of Tpk2p is an important contributing factor in regulating dimorphism of C. albicans.
Journal of Biological Chemistry | 1998
Claudia Timpel; Sabine Strahl-Bolsinger; Karl Ziegelbauer; Joachim F. Ernst
Protein mannosylation by Pmt proteins initiatesO-glycosylation in fungi. We have identified thePMT1 gene and analyzed the function of Pmt1p in the fungal human pathogen Candida albicans. Mutants defective inPMT1 alleles lacked Pmt in vitro enzymatic activity, showed reduced growth rates, and tended to form cellular aggregates. In addition, multiple specific deficiencies not known inSaccharomyces cerevisiae (including defective hyphal morphogenesis; supersensitivity to the antifungal agents hygromycin B, G418, clotrimazole, and calcofluor white; and reduced adherence to Caco-2 epithelial cells) were observed in pmt1 mutants.PMT1 deficiency also led to faster electrophoretic mobility of the Als1p cell wall protein and to elevated extracellular activities of chitinase. Homozygous pmt1 mutants were avirulent in a mouse model of systemic infection, while heterozygousPMT1/pmt1 strains showed reduced virulence. The results indicate that protein O-mannosylation by Pmt proteins occurs in different fungal species, where PMT1deficiency can lead to defects in multiple cellular functions.
Molecular Microbiology | 2002
Dirk P. Bockmühl; Shankarling Krishnamurthy; Michaela Gerads; Anja Sonneborn; Joachim F. Ernst
TPK1 and TPK2 encode both isoforms of protein kinase A (PKA) catalytic subunits in Candida albicans. Mutants lacking both TPK1 alleles showed defective hyphal morphogenesis on solid inducing media, whereas in liquid hypha, formation was affected slightly. In contrast, tpk2 mutants were only partially morphogenesis defective on solid media, whereas a strong block was observed in liquid. In addition, the yeast forms of tpk2– but not tpk1– mutants were completely deficient in invading agar. Because Tpk1p and Tpk2p differ in their N‐terminal domains of approximately 80–90 amino acids, while the catalytic portions are highly homologous, the functions of hybrid Tpk proteins with exchanged N‐terminal domains were tested. The results demonstrate that the catalytic portions mediate Tpk protein specificities with regard to filamentation, whereas agar invasion is mediated by the N‐terminal domain of Tpk2p. Homozygous tpk1 and tpk2 mutants grew normally; however, a tpk2 mutant strain containing a single regulatable TPK1 allele (PCK1p‐TPK1) at low expression levels was severely growth defective. It was completely blocked in hyphal morphogenesis and was stress resistant to high osmolarities or temperatures. Thus, both Tpk isoforms in C. albicans share growth functions but, unlike Saccharomyces cerevisiae isoforms, they have positive, specific roles in filament formation in different environments.
Infection and Immunity | 2002
Petra Heymann; Michaela Gerads; Martin Schaller; Françoise Dromer; Günther Winkelmann; Joachim F. Ernst
ABSTRACT The human fungal pathogen Candida albicans contains a close homologue of yeast siderophore transporters, designated Sit1p/Arn1p. We have characterized the function of SIT1 in C. albicans by constructing sit1 deletion strains and testing their virulence and ability to utilize a range of siderophores and other iron complexes. sit1 mutant strains are defective in the uptake of ferrichrome-type siderophores including ferricrocin, ferrichrysin, ferrirubin, coprogen, and triacetylfusarinine C. A mutation of FTR1 did not impair the use of these siderophores but did affect the uptake of ferrioxamines E and B, as well as of ferric citrate, indicating that their utilization was independent of Sit1p. Hemin was a source of iron for both sit1 and ftr1 mutants, suggesting a pathway of hemin uptake distinct from that of siderophores and iron salts. Heterologous expression of SIT1 in the yeast Saccharomyces cerevisiae confirmed the function of Sit1p as a transporter for ferrichrome-type siderophores. The sit1 mutant was defective in infection of a reconstituted human epithelium as a model for human oral mucosa, while the SIT1 strain was invasive. In contrast, both sit1 and SIT1 strains were equally virulent in the mouse model of systemic infection. These results suggest that siderophore uptake by Sit1p/Arn1p is required in a specific process of C. albicans infection, namely epithelial invasion and penetration, while in the blood or within organs other sources of iron, including heme, may be used.
Molecular Microbiology | 2004
Stephan K.-H. Prill; Birgit Klinkert; Claudia Timpel; Cheryl A. Gale; Klaus Schröppel; Joachim F. Ernst
Protein O‐mannosyltransferases (Pmt proteins) initiate O‐mannosylation of secretory proteins. The PMT gene family of the human fungal pathogen Candida albicans consists of PMT1 and PMT6, as well as three additional PMT genes encoding Pmt2, Pmt4 and Pmt5 isoforms described here. Both PMT2 alleles could not be deleted and growth of conditional strains, containing PMT2 controlled by the MET3‐ or tetOScHOP1‐promoters, was blocked in non‐permissive conditions, indicating that PMT2 is essential for growth. A homozygous pmt4 mutant was viable, but synthetic lethality of pmt4 was observed in combination with pmt1 mutations. Hyphal morphogenesis of a pmt4 mutant was defective under aerobic induction conditions, yet increased in embedded or hypoxic conditions, suggesting a role of Pmt4p‐mediated O‐glycosylation for environment‐specific morphogenetic signalling. Although a PMT5 transcript was detected, a homozygous pmt5 mutant was phenotypically silent. All other pmt mutants showed variable degrees of supersensitivity to antifungals and to cell wall‐destabilizing agents. Cell wall composition was markedly affected in pmt1 and pmt4 mutants, showing a significant decrease in wall mannoproteins. In a mouse model of haematogenously disseminated infection, PMT4 was required for full virulence of C. albicans. Functional analysis of the first complete PMT gene family in a fungal pathogen indicates that Pmt isoforms have variable and specific roles for in vitro and in vivo growth, morphogenesis and antifungal resistance.
Biochemical Journal | 2003
Hubertus Haas; Michelle Schoeser; Emmanuel Lesuisse; Joachim F. Ernst; Walther Parson; Beate Abt; Günther Winkelmann; Harald Oberegger
The filamentous ascomycete Aspergillus nidulans produces three major siderophores: fusigen, triacetylfusarinine C, and ferricrocin. Biosynthesis and uptake of iron from these siderophores, as well as from various heterologous siderophores, is repressed by iron and this regulation is mediated in part by the transcriptional repressor SREA. Recently we have characterized a putative siderophore-transporter-encoding gene ( mirA ). Here we present the characterization of two further SREA- and iron-regulated paralogues (mirB and mirC ), including the chromosomal localization and the complete exon/intron structure. Expression of mirA and mirB in a Saccharomyces cerevisiae strain, which lacks high affinity iron transport systems, showed that MIRA transports specifically the heterologous siderophore enterobactin and that MIRB transports exclusively the native siderophore triacetylfusarinine C. Construction and analysis of an A. nidulans mirA deletion mutant confirmed the substrate specificity of MIRA. Phylogenetic analysis of the available sequences suggests that the split of the species A. nidulans and S. cerevisiae predates the divergence of the paralogous Aspergillus siderophore transporters.
Journal of Bacteriology | 2000
Claudia Timpel; Sigrid Zink; Sabine Strahl-Bolsinger; Klaus Schröppel; Joachim F. Ernst
Protein mannosyltransferases (Pmt proteins) initiate O glycosylation of secreted proteins in fungi. We have characterized PMT6, which encodes the second Pmt protein of the fungal pathogen Candida albicans. The residues of Pmt6p are 21 and 42% identical to those of C. albicans Pmt1p and S. cerevisiae Pmt6p, respectively. Mutants lacking one or two PMT6 alleles grow normally and contain normal Pmt enzymatic activities in cell extracts but show phenotypes including a partial block of hyphal formation (dimorphism) and a supersensitivity to hygromycin B. The morphogenetic defect can be suppressed by overproduction of known components of signaling pathways, including Cek1p, Cph1p, Tpk2p, and Efg1p, suggesting a specific Pmt6p target protein upstream of these components. Mutants lacking both PMT1 and PMT6 are viable and show pmt1 mutant phenotypes and an additional sensitivity to the iron chelator ethylenediamine-di(o-hydroxyphenylacetic acid). The lack of Pmt6p significantly reduces adherence to endothelial cells and overall virulence in a mouse model of systemic infection. The results suggest that Pmt6p regulates a more narrow subclass of proteins in C. albicans than Pmt1p, including secreted proteins responsible for morphogenesis and antifungal sensitivities.
Gene | 1997
Christoph E. Leuker; Anja Sonneborn; Sebastian Delbrück; Joachim F. Ernst
The PCK1 gene encoding PEP carboxykinase (Pck1) of the fungal pathogen Candida albicans was isolated and sequenced. The deduced Pck1 protein has high homology to ATP-dependent Pck1 proteins in other species, especially to Pck1 of Saccharomyces cerevisiae (70% homology), but not to GTP-dependent Pck1 proteins. PCK1 transcript levels were efficiently repressed by glucose and derepressed (induced) on gluconeogenetic carbon sources. PCK1 regulation occurs on the level of transcription, as demonstrated by a fusion of the PCK1 promoter to the LAC4 reporter gene, yielding derepressed/repressed expression ratios of > 100. Homologous sequences in the PCK1 promoters of C. albicans and S. cerevisiae were identified. The PCK1 promoter may be useful to efficiently regulate expression and thereby test the function of genes in C. albicans.