Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joachim Hans is active.

Publication


Featured researches published by Joachim Hans.


Molecular Nutrition & Food Research | 2017

A 12-week intervention with nonivamide, a TRPV1 agonist, prevents a dietary-induced body fat gain and increases peripheral serotonin in moderately overweight subjects.

Christina Maria Hochkogler; Barbara Lieder; Petra Rust; David Berry; Samuel M. Meier; Marc Pignitter; Alessandra Riva; Alina Leitinger; Anne Bruk; Simone Wagner; Joachim Hans; Sabine Widder; Jakob Ley; Gerhard Krammer; Veronika Somoza

Scope: A bolus administration of 0.15 mg nonivamide has previously been demonstrated to reduce energy intake in moderately overweight men. This 12‐week intervention investigated whether a daily consumption of nonivamide in a protein‐based product formulation promotes a reduction in body weight in healthy overweight subjects and affects outcome measures associated with mechanisms regulating food intake, e.g. plasma concentrations of (an)orexigenic hormones, energy substrates as well as changes in fecal microbiota. Methods and results: Nineteen overweight subjects were randomly assigned to either a control (C) or a nonivamide (NV) group. Changes in the body composition and plasma concentrations of satiating hormones were determined at fasting and 15, 30, 60, 90, and 120 min after a glucose load. Participants were instructed to consume 0.15 mg nonivamide per day in 450 mL of a milk shake additionally to their habitual diet. After treatment, a group difference in body fat mass change (–0.61 ± 0.36% in NV and +1.36 ± 0.38% in C) and an increase in postprandial plasma serotonin were demonstrated. Plasma metabolome and fecal microbiome read outs were not affected. Conclusions: A daily intake of 0.15 mg nonivamide helps to support to maintain a healthy body composition.


Molecular Nutrition & Food Research | 2017

Nonivamide, a capsaicin analogue, exhibits anti‐inflammatory properties in peripheral blood mononuclear cells and U‐937 macrophages

Jessica Walker; Jakob Ley; Johanna Schwerzler; Barbara Lieder; Leopoldo Beltrán; Paul M. Ziemba; Hanns Hatt; Joachim Hans; Sabine Widder; Gerhard Krammer; Veronika Somoza

SCOPE Inflammation-related diseases are a worldwide problem. The counteraction of inflammation with compounds activating the trigeminal nerve is one strategy to fight these diseases. Known trigeminally active compounds found in black or red pepper are the tingling t-pellitorine, the pungent capsaicin, and the less pungent nonivamide. The presented study compares the anti-inflammatory potential of nonivamide to the two known anti-inflammatory compounds, elucidating the mechanism of action and the role of transient receptor protein (TRP) channels. METHODS AND RESULTS Primary peripheral blood mononuclear cells (PBMCs) and U-937 macrophages were stimulated with 1 μg/mL LPS from Escherichia coli (EC-LPS) to induce inflammation. Nonivamide attenuated the EC-LPS induced release of IL-6 and TNF-α in PBMCs and U-937 macrophages determined by magnetic bead kit analysis. This anti-inflammatory mechanism was independent from nuclear factor-kappa B pathway but mitogen-activated protein kinase (MAPK) pathway may be involved. In addition, cotreatment of U-937 with the trigeminally active compound and an antagonist of TRPV1 or TRPA1 abolished the anti-inflammatory activity. CONCLUSIONS Nonivamide possessed similar anti-inflammatory potential as capsaicin and t-pellitorine. In U-937 macrophages, the tested compounds exploited an anti-inflammatory effect by inhibiting the EC-LPS induced activation of the MAPK pathway. In addition, the TRP channel activation plays a role in the anti-inflammatory capacity of capsaicin and nonivamide.


PLOS ONE | 2017

The flavanone homoeriodictyol increases SGLT-1-mediated glucose uptake but decreases serotonin release in differentiated Caco-2 cells

Barbara Lieder; Julia Katharina Hoi; Ann-Katrin Holik; Katrin Geissler; Joachim Hans; Barbara Friedl; Kathrin Liszt; Gerhard Krammer; Jakob Ley; Veronika Somoza

Flavanoids and related polyphenols, among them hesperitin, have been shown to modulate cellular glucose transport by targeting SGLT-1 and GLUT-2 transport proteins. We aimed to investigate whether homoeriodictyol, which is structurally related to hesperitin, affects glucose uptake in differentiated Caco-2 cells as a model for the intestinal barrier. The results revealed that, in contrast to other polyphenols, the flavanon homoeriodictyol promotes glucose uptake by 29.0 ± 3.83% at a concentration of 100 μM. The glucose uptake stimulating effect was sensitive to phloridzin, but not to phloretin, indicating an involvement of the sodium-coupled glucose transporter SGLT-1, but not of sodium-independent glucose transporters (GLUT). In addition, in contrast to the increased extracellular serotonin levels by stimulation with 500 mM D-(+)-glucose, treatment with 100 μM homoeriodictyol decreased serotonin release by –48.8 ± 7.57% in Caco-2 cells via a phloridzin-sensitive signaling pathway. Extracellular serotonin levels were also reduced by –57.1 ± 5.43% after application of 0.01 μM homoeriodictyol to human neural SH-SY5Y cells. In conclusion, we demonstrate that homoeriodictyol affects both the glucose metabolism and the serotonin system in Caco-2 cells via a SGLT-1-meditated pathway. Furthermore, the results presented here support the usage of Caco-2 cells as a model for peripheral serotonin release. Further investigations may address the value of homoeriodictyol in the treatment of anorexia and malnutrition through the targeting of SGLT-1.


Journal of Cellular Biochemistry | 2018

The advanced glycation end product Nϵ-carboxymethyllysine and its precursor glyoxal increase serotonin release from Caco-2 cells

Ann-Katrin Holik; Barbara Lieder; Nicole Kretschy; Mark M. Somoza; Jakob Ley; Joachim Hans; Veronika Somoza

Advanced glycation end products (AGEs), comprising a highly diverse class of Maillard reaction compounds formed in vivo and during heating processes of foods, have been described in the progression of several degenerative conditions such as Alzheimers disease and diabetes mellitus. Nϵ‐Carboxymethyllysine (CML) represents a well‐characterized AGE, which is frequently encountered in a Western diet and is known to mediate its cellular effects through binding to the receptor for AGEs (RAGE). As very little is known about the impact of exogenous CML and its precursor, glyoxal, on intestinal cells, a genome‐wide screening using a customized microarray was conducted in fully differentiated Caco‐2 cells. After verification of gene regulation by qPCR, functional assays on fatty acid uptake, glucose uptake, and serotonin release were performed. While only treatment with glyoxal showed a slight impact on fatty acid uptake (P < 0.05), both compounds reduced glucose uptake significantly, leading to values of 81.3% ± 22.8% (500 μM CML, control set to 100%) and 68.3% ± 20.9% (0.3 μM glyoxal). Treatment with 500 μM CML or 0.3 μM glyoxal increased serotonin release (P < 0.05) to 236% ± 111% and 264% ± 66%, respectively. Co‐incubation with the RAGE antagonist FPS‐ZM1 reduced CML‐induced serotonin release by 34%, suggesting a RAGE‐mediated mechanism. Similarly, co‐incubation with the SGLT‐1 inhibitor phloridzin attenuated serotonin release after CML treatment by 32%, hinting at a connection between CML‐stimulated serotonin release and glucose uptake. Future studies need to elucidate whether the CML/glyoxal‐induced serotonin release in enterocytes might stimulate serotonin‐mediated intestinal motility.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Caffeine induces gastric acid secretion via bitter taste signaling in gastric parietal cells

Kathrin Liszt; Jakob Ley; Barbara Lieder; Maik Behrens; Verena Stöger; Angelika Reiner; Christina Maria Hochkogler; Elke Köck; Alessandro Marchiori; Joachim Hans; Sabine Widder; Gerhard Krammer; Gareth John Sanger; Mark M. Somoza; Wolfgang Meyerhof; Veronika Somoza

Significance This study shows that caffeines effect on gastric acid secretion (GAS) is more complex than has been previously thought. Oral and gastric bitter taste receptors are involved in the regulation of GAS in humans. This regulatory process can be modified by the bitter-masking compound homoeriodictyol. Practical applications of the results may include treatment of gastroesophageal reflux disease or peptic ulcer by manipulating gastric pH by means of bitter tastants and inhibitors. Caffeine, generally known as a stimulant of gastric acid secretion (GAS), is a bitter-tasting compound that activates several taste type 2 bitter receptors (TAS2Rs). TAS2Rs are expressed in the mouth and in several extraoral sites, e.g., in the gastrointestinal tract, in which their functional role still needs to be clarified. We hypothesized that caffeine evokes effects on GAS by activation of oral and gastric TAS2Rs and demonstrate that caffeine, when administered encapsulated, stimulates GAS, whereas oral administration of a caffeine solution delays GAS in healthy human subjects. Correlation analysis of data obtained from ingestion of the caffeine solution revealed an association between the magnitude of the GAS response and the perceived bitterness, suggesting a functional role of oral TAS2Rs in GAS. Expression of TAS2Rs, including cognate TAS2Rs for caffeine, was shown in human gastric epithelial cells of the corpus/fundus and in HGT-1 cells, a model for the study of GAS. In HGT-1 cells, various bitter compounds as well as caffeine stimulated proton secretion, whereby the caffeine-evoked effect was (i) shown to depend on one of its cognate receptor, TAS2R43, and adenylyl cyclase; and (ii) reduced by homoeriodictyol (HED), a known inhibitor of caffeine’s bitter taste. This inhibitory effect of HED on caffeine-induced GAS was verified in healthy human subjects. These findings (i) demonstrate that bitter taste receptors in the stomach and the oral cavity are involved in the regulation of GAS and (ii) suggest that bitter tastants and bitter-masking compounds could be potentially useful therapeutics to regulate gastric pH.


Journal of Texture Studies | 2017

Sensory effects of transient receptor potential channel agonists on whole mouth saliva extensional rheology

Jack William Houghton; Joachim Hans; Manuel Pesaro; Jakob Ley; Guy Carpenter; Gordon Proctor

The extensional rheology (ER) of saliva is a property associated with its ability to coat surfaces and is important for the maintenance of a normal mouth feeling. Transient receptor potential (TRP) channels are expressed in the oral cavity and this study investigated how the sensory effects of TRP channel agonists modify the ER of saliva. Healthy volunteers rinsed with solutions containing a TRP agonist. Unstimulated whole mouth saliva (WMS) was collected prior to rinsing and WMS was collected during the first and second minutes after the mouth rinse. The Spinnbarkeit of the collected saliva was measured using a Neva Meter. The nonivamide (TRPV1) mouth rinse increased WMS ER from 37.0 (± 6.3) mm to 49.3 (± 5.1) mm when compared with the vehicle control, which itself had no effect on WMS ER. However, this effect was short-lived and ER of WMS was not increased in the second minute after the nonivamide mouth rinse. The menthol (TRPM8) mouth rinse resulted in an increase up to 57.8 (± 7.8) mm in WMS ER from the vehicle control and returned to control levels in the second minute. The cinnamaldehyde (TRPA1) mouth rinse resulted in no change in WMS ER. It can be concluded that nonivamide and menthol mouth rinsing has a short-term effect of increasing WMS ER, an effect not observed after cinnamaldehyde rinsing. We hypothesize that the activation of some TRP channels in the oral cavity results in changes in the salivary protein composition that in turn alters WMS ER. PRACTICAL APPLICATIONS Identifying compounds that modify the physical properties of saliva in a desirable way is important in developing treatments for conditions associated with changes in the physical properties of saliva such as xerostomia (also known as dry mouth). Furthermore, understanding the rheology of saliva contributes to the elucidation of food oral processing which is of importance to food manufacturers.


Molecular Nutrition & Food Research | 2018

Cinnamyl Isobutyrate Decreases Plasma Glucose Levels and Total Energy Intake from a Standardized Breakfast: A Randomized, Crossover Intervention

Christina Maria Hochkogler; Julia K. Hoi; Barbara Lieder; Nicole Müller; Joachim Hans; Sabine Widder; Jakob Ley; Veronika Somoza

Scope Cinnamon is associated with anti‐obesity effects, regulating food intake, improving plasma glucose levels and lipid profiles in vivo. In the present study, the impact of cinnamyl isobutyrate (CIB), one constituent of cinnamon, on ad libitum food intake from a standardized breakfast and outcome measures of hormonal regulation of appetite were investigated. Methods and results In this randomized, short‐term crossover intervention study, a 75 g per 300 mL glucose solution solely (control) or supplemented with 0.45 mg CIB was administered to 26 healthy volunteers. Prior to and 2 h after receiving control or CIB treatment, subjective hunger perceptions were rated using a visual analog scale. Food intake from a standardized breakfast was assessed 2 h after treatments. Plasma peptide YY3–36, glucagon‐like‐peptide1, ghrelin, and serotonin as well as plasma glucose and insulin were measured in blood samples drawn at fasting and 15, 30, 60, 90, and 120 min after treatment. CIB administration decreased total energy intake and delta area under curve plasma glucose by 4.64 ± 3.51% and 49.3 ± 18.5% compared to control treatment, respectively. Conclusions CIB, administered at a 0.45 mg bolus in 75 g glucose–water solution, decreased ad libitum energy intake from a standardized breakfast and postprandial plasma glucose levels.


Journal of Agricultural and Food Chemistry | 2018

Noncaloric Sweeteners Induce Peripheral Serotonin Secretion via the T1R3-Dependent Pathway in Human Gastric Parietal Tumor Cells (HGT-1)

Muhammet Zopun; Barbara Lieder; Ann-Katrin Holik; Jakop P. Ley; Joachim Hans; Veronika Somoza

The role of sweet taste in energy intake and satiety regulation is still controversial. Noncaloric artificial sweeteners (NCSs) are thought to help reduce energy intake, although little is known about their impact on the satiating neurotransmitter serotonin (5-HT). In the gastrointestinal (GI) tract, 5-HT regulates gastric acid secretion and gastric motility, both part of the complex network of mechanisms regulating food intake and satiety. This study demonstrated a stimulating impact compared to controls (100%) on 5-HT release in human gastric tumor cells (HGT-1) by the NCSs cyclamate (50 mM, 157% ± 6.3%), acesulfame potassium (Ace K, 50 mM, 197% ± 8.6%), saccharin (50 mM, 147% ± 6.7%), sucralose (50 mM, 194% ± 11%), and neohesperidin dihydrochalcone (NHDC, 1 mM, 201% ± 13%). Although these effects were not associated with the sweet taste intensity of the NCSs tested, involvement of the sweet receptor subunit T1R3 in the NCS-evoked response was demonstrated by mRNA expression of TAS1R3, co-incubation experiments using the T1R3 receptor antagonist lactisole, and a TAS1R3 siRNA knockdown approach. Analysis of the downstream signaling revealed activation of the cAMP/ERK/Ca2+ cascade. Co-treatment experiments with 10 mM glucose enhanced the 5-HT release induced by cyclamate, Ace K, saccharin, and sucralose, thereby supporting the enhancing effect of glucose on a NCS-mediated response. Overall, the results obtained identify NCSs as potent inducers of 5-HT release via T1R3 in human gastric parietal cells in culture and warrant in vivo studies to demonstrate their efficacy.


Journal of Agricultural and Food Chemistry | 2018

Human Sweet Receptor T1R3 is Functional in Human Gastric Parietal Tumor Cells (HGT-1) and Modulates Cyclamate and Acesulfame K-Induced Mechanisms of Gastric Acid Secretion

Muhammet Zopun; Kathrin Liszt; Verena Stoeger; Maik Behrens; Ulrike Redel; Jakob Ley; Joachim Hans; Veronika Somoza

The noncaloric sweeteners (NCSs) cyclamate (Cycl) and acesulfame K (AceK) are widely added to foods and beverages. Little is known about their impact on gastric acid secretion (GAS), which is stimulated by dietary protein and bitter-tasting compounds. Since Cycl and AceK have a bitter off taste in addition to their sweet taste, we hypothesized they modulate mechanisms of GAS in human gastric parietal cells (HGT-1). HGT-1 cells were exposed to sweet tastants (50 mM of glucose, d-threonine, Cycl, or AceK) and analyzed for their intracellular pH index (IPX), as an indicator of proton secretion by means of a pH-sensitive dye, and for mRNA levels of GAS-associated genes by RT-qPCR. Since the NCSs act via the sweet taste-sensing receptor T1R2/T1R3, mRNA expression of the corresponding genes was analyzed in addition to immunocytochemical localization of the T1R2 and T1R3 receptor proteins. Exposure of HGT-1 cells to AceK or d-threonine increased the IPX to 0.60 ± 0.05 and 0.80 ± 0.04 ( P ≤ 0.05), respectively, thereby indicating a reduced secretion of protons, whereas Cycl demonstrated the opposite effect with IPX values of -0.69 ± 0.08 ( P ≤ 0.05) compared to controls (IPX = 0). Cotreatment with the T1R3-inhibitor lactisole as well as a TAS1R3 siRNA knock-down approach reduced the impact of Cycl, AceK, and d-thr on proton release ( P ≤ 0.05), whereas cotreatment with 10 mM glucose enhanced the NCS-induced effect ( P ≤ 0.05). Overall, we demonstrated Cycl and AceK as modulators of proton secretion in HGT-1 cells and identified T1R3 as a key element in this response.


Journal of Agricultural and Food Chemistry | 2017

Characterization of Bitter Compounds via Modulation of Proton Secretion in Human Gastric Parietal Cells in Culture

Kathrin Liszt; Joachim Hans; Jakob Ley; Elke Köck; Veronika Somoza

Humans perceive bitterness via around 25 different bitter receptors. Therefore, the identification of antagonists remains a complex challenge. We previously demonstrated several bitter-tasting compounds such as caffeine to induce acid secretion in the stomach and in a human gastric tumor cell line (HGT-1). Here, the results of a fluorescent-based in vitro assay using HGT-1 cells and a human sensory panel testing nine selected potential bitter modulators, with or without the bitter compounds caffeine or theobromine, were compared. Of the bitter-modulating compounds tested, eriodictyol, matairesinol, enterolacton, lariciresinol, and homoeriodictyol reduced the effect of caffeine on proton secretion by -163 ± 14.0, -152 ± 12.4, -74 ± 16.4, -58 ± 7.2, and -44.6 ± 16.5%, respectively, and reduced the bitter intensity of caffeine in the human sensory panel. In contrast, naringenin and 5,7-dihydroxy-4(4-hydroxyphenyl)chroman-2-one neither reduced the caffeine-induced proton secretion in HGT-1 cells nor showed an effect on bitter intensity perceived by the sensory panel. Results for theobromine were not as pronounced as those for caffeine, but followed a similar trend. The results demonstrate that the HGT-1 in vitro assay is a useful tool to identify potential bitter-masking compounds. Nevertheless, a sensory human panel is necessary to quantify the bitter-masking potency.

Collaboration


Dive into the Joachim Hans's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge