Joachim Hartmann
Texas Tech University Health Sciences Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joachim Hartmann.
Neurobiology of Aging | 2004
Anna Walter; Ulrike Korth; Michael Hilgert; Joachim Hartmann; Oksana Weichel; Marion Hilgert; K. Fassbender; Andrea Schmitt; Jochen Klein
Experimental and clinical studies give evidence for breakdown of membrane phospholipids during neurodegeneration. In the present study, we measured the levels of glycerophosphocholine (GPCh), phosphocholine (PCh), and choline, that is, water-soluble metabolites of phosphatidylcholine (PtdCho), in human cerebrospinal fluid (CSF). Among 30 cognitively normal patients the average CSF levels of GPCh, phosphocholine and choline were 3.64, 1.28, and 1.93 microM, respectively; metabolite levels did not change with increasing age. When compared with age-matched controls, patients with Alzheimers disease had elevated levels of all choline metabolites: GPCh was significantly increased by 76% (P<0.01), phosphocholine by 52% (P<0.05), and free choline (Ch) by 39%. Six patients with vascular dementia had lower choline and elevated phosphocholine levels, when compared to controls, but normal levels of GPCh. These data demonstrate that Alzheimers disease is accompanied by an increased PtdCho hydrolysis in the brain. PtdCho breakdown seems to be mediated by phospholipase A2 and leads to significantly elevated levels of GPCh in CSF.
Journal of Neurochemistry | 2007
Joachim Hartmann; Cornelia Kiewert; Ellen G. Duysen; Oksana Lockridge; Jochen Klein
Central cholinergic systems are involved in a plethora of brain functions and are severely and selectively damaged in neurodegenerative diseases such as Alzheimer’s disease and dementia with Lewy bodies. Cholinergic dysfunction is treated with inhibitors of acetylcholinesterase (AChE) while the role of butyrylcholinesterase (BChE) for brain cholinergic function is unclear. We have used in vivo microdialysis to investigate the regulation of hippocampal acetylcholine (ACh) levels in mice that are devoid of AChE (AChE‐/‐ mice). Extracellular ACh levels in the hippocampus were 60‐fold elevated in AChE‐/‐ mice compared with wild‐type (AChE+/+) animals. In AChE‐/‐ mice, calcium‐free conditions reduced hippocampal ACh levels by 50%, and infusion of tetrodotoxin by more than 90%, indicating continuous ACh release. Infusion of a selective AChE inhibitor (BW284c51) caused a dose‐dependent, up to 16‐fold increase of extracellular ACh levels in AChE+/+ mice but did not change ACh levels in AChE‐/‐ mice. In contrast, infusion of a selective inhibitor of BChE (bambuterol) caused up to fivefold elevation of ACh levels in AChE‐/‐ mice, but was without effect in AChE+/+ animals. These results were corroborated with two other specific inhibitors of AChE and BChE, tolserine and bis‐norcymserine, respectively. We conclude that lack of AChE causes dramatically increased levels of extracellular ACh in the brain. Importantly, in the absence of AChE, the levels of extracellular ACh in the brain are controlled by the activity of BChE. These results point to a potential usefulness of BChE inhibitors in the treatment of central cholinergic dysfunction in which brain AChE activity is typically reduced.
Brain Research | 2010
Cornelia Kiewert; Alexander Mdzinarishvili; Joachim Hartmann; Ulrich Bickel; Jochen Klein
Middle cerebral artery occlusion (MCAO) is a popular model in experimental stroke research and causes prominent ischemic damage in the forebrain. To characterize metabolic changes induced by MCAO, we have induced permanent MCAO in mice that were implanted with a microdialysis probe in either striatum or hippocampus. Immediately after the onset of ischemia, glucose levels dropped to <10% of basal values in the striatum while they dropped to 50%, and recovered thereafter, in hippocampus. Extracellular levels of glutamate rose 80-fold in the striatum but only 10-fold, and in a transient fashion, in hippocampus. In striatum, release of acetylcholine briefly increased, then dropped to very low values. Both glycerol and choline levels increased strongly during ischemia in the striatum reflecting membrane breakdown. In hippocampus, glycerol increased transiently while the increase of choline levels was moderate. Taken together, these observations delineate metabolic changes in ischemic mouse brain with the striatum representing the core area of ischemia. In comparison, the dorsal hippocampus was identified as a brain area suitable for monitoring metabolic responses in the penumbra region.
Neuroscience | 2004
Joachim Hartmann; C Erb; U Ebert; K.H Baumann; A Popp; G König; Jochen Klein
Alzheimers disease is characterized by amyloid peptide formation and deposition, neurofibrillary tangles, central cholinergic dysfunction, and dementia; however, the relationship between these parameters is not well understood. We studied the effect of amyloid peptide formation and deposition on central cholinergic function in knock-in mice carrying the human amyloid precursor protein (APP) gene with the Swedish/London double mutation (APP-SL mice) which were crossbred with transgenic mice overexpressing normal (PS1wt) or mutated (M146L; PS1mut) human presenilin-1. APP-SLxPS1mut mice had increased levels of Abeta peptides at 10 months of age and amyloid plaques at 14 months of age while APP-SLxPS1wt mice did not have increased peptide levels and did not develop amyloid plaques. We used microdialysis in 15-27 months old mice to compare hippocampal acetylcholine (ACh) levels in the two mouse lines and found that extracellular ACh levels were slightly but significantly reduced in the APP-SLxPS1mut mice (-26%; P=0.044). Exploratory activity in the open field increased hippocampal ACh release by two-fold in both mouse lines; total and relative increases were not significantly different for the two strains under study. Similarly, infusion of scopolamine (1 microM) increased hippocampal ACh release to a similar extent (3-5-fold) in both groups. High-affinity choline uptake, a measure of the ACh turnover rate, was identical in both mouse lines. Neurons expressing choline acetyltransferase were increased in the septum of APP-SLxPS1mut mice (+26%; P=0.046). We conclude that amyloid peptide production causes a small decrease of extracellular ACh levels. The deposition of amyloid plaques, however, does not impair stimulated ACh release and proceeds without major changes of central cholinergic function.
Journal of Pharmacy and Pharmaceutical Sciences | 2009
Runa S. Naik; Joachim Hartmann; Cornelia Kiewert; Ellen G. Duysen; Oksana Lockridge; Jochen Klein
PURPOSE Alzheimer s disease is characterized by a dysfunction of central cholinergic systems and is treated by inhibitors of acetylcholinesterase (AChE). This study tests the effect of two AChE inhibitors in therapeutic use, rivastigmine and donepezil, in mice that are devoid of AChE (AChE-/- mice). Rivastigmine is an inhibitor of both AChE and butyrylcholinesterase (BChE) whereas donepezil is a selective inhibitor of AChE. METHODS We have used in vivo microdialysis to investigate the effects of the two drugs on the extracellular concentration of acetylcholine (ACh) in the hippocampus of AChE-/- mice. RESULTS Extracellular ACh levels in the hippocampus were 30-fold elevated in AChE-/- mice compared to wild-type (AChE+/+) animals. Infusion of rivastigmine (1 and 10 microM) caused a further doubling of ACh levels in AChE-/- mice within 90-120 min. In contrast, infusion of donepezil (1 microM) did not affect hippocampal ACh levels in AChE-/- mice although it increased ACh levels more than twofold in wild-type mice. CONCLUSIONS In the absence of AChE, rivastigmine enhances the levels of extracellular ACh by inhibiting BChE. This finding may be of therapeutic relevance because BChE activity is preserved, but AChE activity is strongly decreased, in late-stage Alzheimer s disease.
Brain Research | 2007
Cornelia Kiewert; Vikas Kumar; Oksana Hildmann; Misty Rueda; Joachim Hartmann; Runa S. Naik; Jochen Klein
Bilobalide, a constituent of Ginkgo biloba, has neuroprotective properties. Its mechanism of action is unknown but it was recently found to block GABA(A) receptors. The goal of this study was to test the potential role of a GABAergic mechanism for the neuroprotective activity of bilobalide. In rat hippocampal slices exposed to NMDA, release of choline indicates breakdown of membrane phospholipids. NMDA-induced choline release was almost completely blocked in the presence of bilobalide (10 microM) and under low-chloride conditions. Bicuculline (100 microM), a competitive antagonist at GABA(A) receptors, reduced NMDA-induced choline release to a small extent (-23%). GABA (100 microM) partially antagonized the inhibitory action of bilobalide. Exposure of hippocampal slices to NMDA also caused edema formation as measured by increases of tissue water content. NMDA-induced edema formation was suppressed by bilobalide and by low-chloride conditions. Bicuculline exerted partial protection (by 30%) while GABA reduced bilobalides effect by about one third. To investigate bilobalides interaction with GABA(A) receptors directly, we measured binding of [(35)S]-TBPS to rat cortical membranes. TBPS binding was competitively inhibited by bilobalide in the low micromolar range (IC(50)=3.7 microM). As a functional test, we determined (36)chloride flux in rat corticohippocampal synaptoneurosomes. GABA (100 microM) significantly increased (36)chloride flux (+65%), and this increase was blocked by bilobalide, but with low potency (IC(50): 39 microM). We conclude that, while antagonism of GABA(A) receptors may contribute to bilobalides neuroprotective effects, additional mechanisms must be postulated to fully explain bilobalides actions.
Brain Research | 2008
Cornelia Kiewert; Vikas Kumar; Oksana Hildmann; Joachim Hartmann; Markus Hillert; Jochen Klein
Bilobalide, a constituent of Ginkgo biloba, has neuroprotective properties. Its mechanism of action is unknown but it was recently found to interact with neuronal transmission mediated by glutamate, gamma-aminobutyric acid (GABA) and glycine. The goal of this study was to test the interaction of bilobalide with glycine in assays of neuroprotection. In rat hippocampal slices exposed to N-methyl-D-aspartate (NMDA), release of choline indicates breakdown of membrane phospholipids. NMDA-induced choline release was almost completely blocked in the presence of bilobalide (10 microM). Glycine (10-100 microM) antagonized the inhibitory action of bilobalide in this assay. In a second assay of excitotoxicity, we measured tissue water content as an indicator of cytotoxic edema formation in hippocampal slices which were exposed to NMDA. In this assay, edema formation was suppressed by bilobalide but bilobalides action was attenuated in the presence of glycine and of D-serine (100 microM each). To investigate bilobalides interaction with glycine receptors directly, we determined 36chloride flux in rat cortico-hippocampal synaptoneurosomes. Glycine (100 microM) was inactive in this assay indicating an absence of functional glycine-A receptors in this preparation. [3H]Glycine was used to assess binding at the glycine binding site of the NMDA receptor but bilobalide was found to be inactive in this assay. Finally, [3H]glycine release was monitored in hippocampal slices exposed to oxygen-glucose deprivation. In this model, glycine release was induced by ischemia, an effect that was strongly reduced by bilobalide. We conclude that bilobalide does not interact with glycine receptors in neurochemical assays but it significantly reduces the release of glycine under ischemic conditions. This effect likely contributes to bilobalides neuroprotective effects in assays of excitotoxicity and ischemia.
Neuroscience Letters | 2004
Cornelia Kiewert; Marie-Luise Buchholzer; Joachim Hartmann; Shyam Sunder Chatterjee; Jochen Klein
Extracts of the medicinal plant St. Johns Wort (Hypericum perforatum) are widely used in the therapy of affective disorders and have been reported to exert antidepressant, anxiolytic, and cognitive effects in experimental and clinical studies. We here report that hyperforin, the major active constituent of the extract, increases the release of acetylcholine from rat hippocampus in vivo as determined by microdialysis. Hippocampal acetylcholine levels were increased by 50-100% following the systemic administration of pure hyperforin at doses of 1 and 10 mg/kg. The effect was almost completely suppressed by local perfusion with calcium-free buffer or with tetrodotoxin (1 microM). We conclude that hyperforin releases hippocampal acetylcholine by an indirect mechanism of action which is calcium-dependent and requires intact neuronal communication and cell firing. Our findings suggest therapeutic efficacy of St. Johns Wort extracts in central cholinergic dysfunction.
Neurochemistry International | 2008
Joachim Hartmann; Cornelia Kiewert; Ellen G. Duysen; Oksana Lockridge; Jochen Klein
Mice deficient for acetylcholinesterase (AChE) have strongly increased extracellular levels of acetylcholine (ACh) in the dorsal hippocampus [Hartmann, J., Kiewert, C., Duysen, E.G., Lockridge, O., Greig, N.H., Klein, J., 2007. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. J. Neurochem. 100, 1421-1429]. Using microdialysis, we found that increased ACh levels are accompanied by decreased levels of extracellular choline which were 1.60 microM in AChE-deficient mice and 4.36 microM in wild-type mice. Addition of choline (10 microM) to the perfusion fluid, while ineffective in wild-type animals, more than doubled extracellular ACh levels in AChE-deficient mice. High-affinity choline uptake (HACU), as measured ex vivo in corticohippocampal synaptosomes, was more than doubled in AChE-deficient mice. Inhibition of HACU by hemicholinium-3 (HC-3) in vivo reduced extracellular levels of ACh by 60% in wild-type mice but by more than 90% in AChE-deficient mice. Decreased ACh levels caused by infusion of HC-3 or tetrodotoxin (TTX) were accompanied by increased levels of free choline. Infusion of scopolamine (1 microM) caused a fivefold increase of ACh levels in wild-type animals but only a 50% increase in AChE-deficient mice. In conclusion, absence of AChE causes dynamic changes in the ratio of choline to ACh. High levels of extracellular ACh are accompanied by reduced levels of extracellular choline, and ACh release becomes strongly dependent on choline availability. Similar changes may take place in patients chronically exposed to AChE inhibitors.
Brain Research | 2011
Dorothee Lang; Cornelia Kiewert; Alexander Mdzinarishvili; Tina M. Schwarzkopf; Rachita Sumbria; Joachim Hartmann; Jochen Klein
Neuroprotective properties of bilobalide, a specific constituent of Ginkgo extracts, were tested in a mouse model of stroke. After 24h of middle cerebral artery occlusion (MCAO), bilobalide reduced infarct areas in the core region (striatum) by 40-50% when given at 10mg/kg 1h prior to MCAO. Neuroprotection was also observed at lower doses, or when the drug was given 1h past stroke induction. Sensorimotor function in mice was improved by bilobalide as shown by corner and chimney tests. When brain metabolism in situ was monitored by microdialysis, MCAO caused a rapid disappearance of extracellular glucose in the striatum which returned to baseline levels after reperfusion. Extracellular levels of glutamate were increased by more than ten-fold in striatal tissue, and by four- to fivefold in hippocampal tissue (penumbra). Bilobalide did not affect glucose levels but strongly attenuated glutamate release in both core and penumbra regions. Bilobalide was equally active when given locally via the microdialysis probe and also reduced ischemia-induced glutamate release in vitro in brain slices. We conclude that bilobalide is a strong neuroprotectant in vivo at doses that can be used therapeutically in humans. The mechanism of action evidently involves reduction of glutamate release, thereby reducing excitotoxicity.