Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joachim Heberle is active.

Publication


Featured researches published by Joachim Heberle.


Journal of Molecular Biology | 2002

Proteorhodopsin is a Light-driven Proton Pump with Variable Vectoriality

Thomas Friedrich; Sven Geibel; Rolf Kalmbach; Igor Chizhov; Kenichi Ataka; Joachim Heberle; Martin Engelhard; Ernst Bamberg

Proteorhodopsin, a homologue of archaeal bacteriorhodopsin (BR), belongs to a newly identified family of retinal proteins from marine bacteria, which could play an important role in the energy balance of the biosphere. We cloned the cDNA sequence of proteorhodopsin by chemical gene synthesis, expressed the protein in Escherichia coli cells, purified and reconstituted the protein in its functional active state. The photocycle characteristics were determined by time-resolved absorption and Fourier transform infrared (FT-IR) spectroscopy. The pH-dependence of the absorption spectrum indicates that the pK(a) of the primary acceptor of the Schiff base proton (Asp97) is 7.68. Generally, the photocycle of proteorhodopsin is similar to that of BR, although an L-like photocycle intermediate was not detectable. Whereas at pH>7 an M-like intermediate is formed upon illumination, at pH 5 no M-like intermediate could be detected. As the photocycle kinetics do not change between the acidic and alkaline state of proteorhodopsin, the only difference between these two forms is the protonation status of Asp97. This is corroborated by time-resolved FT-IR spectroscopy, which demonstrates that proton transfer from the retinal Schiff base to Asp97 is observed at alkaline pH, but the other vibrational changes are essentially pH-independent.After reconstitution into proteoliposomes, light-induced proton currents of proteorhodopsin were measured in a compound membrane system where proteoliposomes were adsorbed to planar lipid bilayers. Our results show that proteorhodopsin is a light-driven proton pump with characteristics similar to those of BR at alkaline pH. However, at acidic pH, the direction of proton pumping is inverted. Complementary experiments were carried out on proteorhodopsin expressed heterologously in Xenopus laevis oocytes under voltage clamp conditions. The following results were obtained. (1) At alkaline pH, proteorhodopsin mediates outwardly directed proton pumping like BR. (2) The direction of proton pumping can be inverted, when Asp97 is protonated. (3) The current can be inverted by changes of the polarity of the applied voltage. (4) The light intensity-dependence of the photocurrents leads to the conclusion that the alkaline form of proteorhodopsin shows efficient proton pumping after sequential excitation by two photons.


ACS Nano | 2009

Photosynthetic Hydrogen Production by a Hybrid Complex of Photosystem I and [NiFe]-Hydrogenase

Henning Krassen; Alexander Schwarze; Baerbel Friedrich; Kenichi Ataka; Oliver Lenz; Joachim Heberle

Nature provides key components for generating fuels from renewable resources in the form of enzymatic nanomachines which catalyze crucial steps in biological energy conversion, for example, the photosynthetic apparatus, which transforms solar power into chemical energy, and hydrogenases, capable of generating molecular hydrogen. As sunlight is usually used to synthesize carbohydrates, direct generation of hydrogen from light represents an exception in nature. On the molecular level, the crucial step for conversion of solar energy into H(2) lies in the efficient electronic coupling of photosystem I and hydrogenase. Here we show the stepwise assembly of a hybrid complex consisting of photosystem I and hydrogenase on a solid gold surface. This device gave rise to light-induced H(2) evolution. Hydrogen production is possible at far higher potential and thus lower energy compared to those of previously described (bio)nanoelectronic devices that did not employ the photosynthesis apparatus. The successful demonstration of efficient solar-to-hydrogen conversion may serve as a blueprint for the establishment of this system in a living organism with the paramount advantage of self-replication.


Analytical and Bioanalytical Chemistry | 2007

Biochemical applications of surface-enhanced infrared absorption spectroscopy

Kenichi Ataka; Joachim Heberle

AbstractAn overview is presented on the application of surface-enhanced infrared absorption (SEIRA) spectroscopy to biochemical problems. Use of SEIRA results in high surface sensitivity by enhancing the signal of the adsorbed molecule by approximately two orders of magnitude and has the potential to enable new studies, from fundamental aspects to applied sciences. This report surveys studies of DNA and nucleic acid adsorption to gold surfaces, development of immunoassays, electron transfer between metal electrodes and proteins, and protein–protein interactions. Because signal enhancement in SEIRA uses surface properties of the nano-structured metal, the biomaterial must be tethered to the metal without hampering its functionality. Because many biochemical reactions proceed vectorially, their functionality depends on proper orientation of the biomaterial. Thus, surface-modification techniques are addressed that enable control of the proper orientation of proteins on the metal surface. FigureSurface enhanced infrared absorption spectroscopy (SEIRAS) on the studies of tethered protein monolayer (cytochrome c oxidase and cytochrome c) on gold substrate (left), and its potential induced surface enhanced infrared difference absorption (SEIDA) spectrum


Photochemistry and Photobiology | 2006

Light-Driven Water Splitting for (Bio-)Hydrogen Production: Photosystem 2 as the Central Part of a Bioelectrochemical Device

Adrian Badura; Berndt Esper; Kenichi Ataka; Christian Grunwald; Christof Wöll; Jürgen Kuhlmann; Joachim Heberle; Matthias Rögner

Abstract To establish a semiartificial device for (bio-)hydrogen production utilizing photosynthetic water oxidation, we report on the immobilization of a Photosystem 2 on electrode surfaces. For this purpose, an isolated Photosystem 2 with a genetically introduced His tag from the cyanobacterium Thermosynechococcus elongatus was attached onto gold electrodes modified with thiolates bearing terminal Ni(II)-nitrilotriacetic acid groups. Surface enhanced infrared absorption spectroscopy showed the binding kinetics of Photosystem 2, whereas surface plasmon resonance measurements allowed the amount of protein adsorbed to be quantified. On the basis of these data, the surface coverage was calculated to be 0.29 pmol protein cm−2, which is in agreement with the formation of a monomolecular film on the electrode surface. Upon illumination, the generation of a photocurrent was observed with current densities of up to 14 μA cm−2. This photocurrent is clearly dependent on light quality showing an action spectrum similar to an isolated Photosystem 2. The achieved current densities are equivalent to the highest reported oxygen evolution activities in solution under comparable conditions.


Nature Communications | 2013

Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy

Iban Amenabar; Simon Poly; Wiwat Nuansing; Elmar H. Hubrich; Alexander A. Govyadinov; Florian Huth; Roman Krutokhvostov; Lianbing Zhang; Mato Knez; Joachim Heberle; Alexander M. Bittner; Rainer Hillenbrand

Mid-infrared spectroscopy is a widely used tool for material identification and secondary structure analysis in chemistry, biology and biochemistry. However, the diffraction limit prevents nanoscale protein studies. Here we introduce mapping of protein structure with 30 nm lateral resolution and sensitivity to individual protein complexes by Fourier transform infrared nanospectroscopy (nano-FTIR). We present local broadband spectra of one virus, ferritin complexes, purple membranes and insulin aggregates, which can be interpreted in terms of their α-helical and/or β-sheet structure. Applying nano-FTIR for studying insulin fibrils—a model system widely used in neurodegenerative disease research—we find clear evidence that 3-nm-thin amyloid-like fibrils contain a large amount of α-helical structure. This reveals the surprisingly high level of protein organization in the fibril’s periphery, which might explain why fibrils associate. We envision a wide application potential of nano-FTIR, including cellular receptor in vitro mapping and analysis of proteins within quaternary structures.


Biochimica et Biophysica Acta | 2000

Proton transfer reactions across bacteriorhodopsin and along the membrane

Joachim Heberle

Bacteriorhodopsin is probably the best understood proton pump so far and is considered to be a model system for proton translocating membrane proteins. The basis of a molecular description of proton translocation is set by having the luxury of six highly resolved structural models at hand. Details of the mechanism and reaction dynamics were elucidated by a whole variety of biophysical techniques. The current molecular picture of catalysis by BR will be presented with examples from time-resolved spectroscopy. FT-IR spectroscopy monitors single proton transfer events within bacteriorhodopsin and judiciously positioned pH indicators detect proton migration at the membrane surface. Emerging properties are briefly outlined that underlie the efficient proton transfer across and along biological membranes.


Biophysical Journal | 2000

Structural Equilibrium Fluctuations in Mesophilic and Thermophilic α-Amylase

Jörg Fitter; Joachim Heberle

By comparing a mesophilic alpha-amylase with its thermophilic homolog, we investigated the relationship between thermal stability and internal equilibrium fluctuations. Fourier transform infrared spectroscopy monitoring hydrogen/deuterium (H/D) exchange kinetics and incoherent neutron scattering measuring picosecond dynamics were used to study dynamic features of the folded state at room temperature. Fairly similar rates of slowly exchanging amide protons indicate about the same free energy of stabilization DeltaG(stab) for both enzymes at room temperature. With respect to motions on shorter time scales, the thermophilic enzyme is characterized by an unexpected higher structural flexibility as compared to the mesophilic counterpart. In particular, the picosecond dynamics revealed a higher degree of conformational freedom for the thermophilic alpha-amylase. The mechanism proposed for increasing thermal stability in the present case is characterized by entropic stabilization and by flattening of the curvature of DeltaG(stab) as a function of temperature.


Journal of the American Chemical Society | 2009

Conformational Changes of Channelrhodopsin-2

Ionela Radu; Christian Bamann; Melanie Nack; Georg Nagel; Ernst Bamberg; Joachim Heberle

Channelrhodopsin-2 (ChR2) is a member of the new class of light-gated ion channels which serve as phototaxis receptors in the green alga Chlamydomonas reinhardtii. The protein is employed in optogenetics where neural circuits are optically stimulated under high spatiotemporal control. Despite its rapidly growing use in physiological experiments, the reaction mechanism of ChR2 is poorly understood. Here, we applied vibrational spectroscopy to trace structural changes of ChR2 after light-excitation of the retinal chromophore. FT-IR difference spectra of the various photocycle intermediates revealed that stages of the photoreaction preceding (P(1) state) and succeeding (P(4)) the conductive state of the channel (P(3)) are associated with large conformational changes of the protein backbone as indicate by strong differences in the amide I bands. Critical hydrogen-bonding changes of protonated carboxylic amino acid side chains (D156, E90) were detected and discussed with regard to the functional mechanism. We used the C128T mutant where the lifetime of P(3) is prolonged and applied FT-IR and resonance Raman spectroscopy to study the conductive P(3) state of ChR2. Finally, a mechanistic model is proposed that links the observed structural changes of ChR2 to the changes in the channels conductance.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating.

Víctor A. Lórenz-Fonfría; Tom Resler; Nils Krause; Melanie Nack; Michael Gossing; Gabriele Fischer von Mollard; Christian Bamann; Ernst Bamberg; Ramona Schlesinger; Joachim Heberle

Significance It was always a dream to control cells and living animals by light. Discovery of channelrhodopsin turned the dream into reality because this light-activated cation channel is able to elicit action potentials with unprecedented spatial and temporal resolution. To unravel the underlying molecular mechanism, we have applied time-resolved IR spectroscopy, and we suggest how the observed proton transfer and the protein conformational changes lead to opening of the cation channel. Our results will not only contribute to the rational design of channelrhodopsin variants with improved properties, but also help to decipher the temporal sequence in the gating of ion channels. The discovery of the light-gated ion channel channelrhodopsin (ChR) set the stage for the novel field of optogenetics, where cellular processes are controlled by light. However, the underlying molecular mechanism of light-induced cation permeation in ChR2 remains unknown. Here, we have traced the structural changes of ChR2 by time-resolved FTIR spectroscopy, complemented by functional electrophysiological measurements. We have resolved the vibrational changes associated with the open states of the channel (P2390 and P3520) and characterized several proton transfer events. Analysis of the amide I vibrations suggests a transient increase in hydration of transmembrane α-helices with a t1/2 = 60 μs, which tallies with the onset of cation permeation. Aspartate 253 accepts the proton released by the Schiff base (t1/2 = 10 μs), with the latter being reprotonated by aspartic acid 156 (t1/2 = 2 ms). The internal proton acceptor and donor groups, corresponding to D212 and D115 in bacteriorhodopsin, are clearly different from other microbial rhodopsins, indicating that their spatial position in the protein was relocated during evolution. Previous conclusions on the involvement of glutamic acid 90 in channel opening are ruled out by demonstrating that E90 deprotonates exclusively in the nonconductive P4480 state. Our results merge into a mechanistic proposal that relates the observed proton transfer reactions and the protein conformational changes to the gating of the cation channel.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Resolving voltage-dependent structural changes of a membrane photoreceptor by surface-enhanced IR difference spectroscopy

Xiue Jiang; E. Zaitseva; M. Schmidt; Friedrich Siebert; Martin Engelhard; Ramona Schlesinger; Kenichi Ataka; R. Vogel; Joachim Heberle

Membrane proteins are molecular machines that transport ions, solutes, or information across the cell membrane. Electrophysiological techniques have unraveled many functional aspects of ion channels but suffer from the lack of structural sensitivity. Here, we present spectroelectrochemical data on vibrational changes of membrane proteins derived from a single monolayer. For the seven-helical transmembrane protein sensory rhodopsin II, structural changes of the protein backbone and the retinal cofactor as well as single ion transfer events are resolved by surface-enhanced IR difference absorption spectroscopy (SEIDAS). Angular changes of bonds versus the membrane normal have been determined because SEIDAS monitors only those vibrations whose dipole moment are oriented perpendicular to the solid surface. The application of negative membrane potentials (ΔV = −0.3 V) leads to the selective halt of the light-induced proton transfer at the stage of D75, the counter ion of the retinal Schiff base. It is inferred that the voltage raises the energy barrier of this particular proton-transfer reaction, rendering the energy deposited in the retinal by light excitation insufficient for charge transfer to occur. The other structural rearrangements that accompany light-induced activity of the membrane protein, are essentially unaffected by the transmembrane electric field. Our results demonstrate that SEIDAS is a generic approach to study processes that depend on the membrane potential, like those in voltage-gated ion channels and transporters, to elucidate the mechanism of ion transfer with unprecedented spatial sensitivity and temporal resolution.

Collaboration


Dive into the Joachim Heberle's collaboration.

Top Co-Authors

Avatar

Kenichi Ataka

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georg Büldt

Moscow Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norbert A. Dencher

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ionela Radu

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Sven T. Stripp

Free University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge