Joachim Naumann
Humboldt University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joachim Naumann.
Archive | 2005
Joachim Naumann; Michael Wolff
This paper concerns various types of CACCIOPPOLI and POINCAR E inequalities on weak solutions u of nonlinear parabolic systems The main result of the paper is the local integrability of the spatial gradient Du to an exponent p
Applied Mathematics and Optimization | 1991
Joachim Naumann; Michael Wolff
In this paper we prove a uniqueness theorem for weak solutions of a mixed boundary-value problem for the stationary semiconductor equations (van Roosbroecks system) under the assumption that the deviation of the carrier potentials from an equilibrium solution is sufficiently small.
Annali di Matematica Pura ed Applicata | 1990
Joachim Naumann
SummaryWe prove the existence of second order derivatives of any weak solution of the system
Annali di Matematica Pura ed Applicata | 1988
Joachim Naumann
Archive | 2011
Pierre-Étienne Druet; Joachim Naumann; Jörg Wolf
\frac{\partial }{{\partial x_\alpha }}A_i^\alpha (\nabla u) = 0(i = 1,...,N)
Archive | 2010
Joachim Naumann; Jörg Wolf
arXiv: Analysis of PDEs | 2016
Joachim Naumann
under very mild conditions on the functions Aiα. These conditions include the special case: Aiα(ξ)=0 if ξ=0, Aiα(ξ)=|ξ|p−2ξiα if ξ≠0 (ξ∈ℝnN;α=1,...,n,i=1,...,N;1<p<2). Under a stronger condition on Aiα we establish an appropriate Caccioppoli inequality which enables us to prove the integrability of (1+|∇u|2)(p−1)/4 ∇2u to a certain power t > 2.
Mathematical Methods in The Applied Sciences | 1997
J. Frehse; Joachim Naumann
SuntoNel presente lavoro si considera il sistema del moto stazionario di un fluido incompressibile
Archive | 1995
Joachim Naumann; Michael Wolff
Mathematical Methods in The Applied Sciences | 2006
Joachim Naumann
\begin{gathered} - \frac{\partial }{{\partial x_j }}S_{ij} (D(u)) + \frac{{\partial p}}{{\partial x_i }} = f_i (i = 1,2,3), \hfill \\ div u = 0 \hfill \\ \end{gathered}